Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(11): 16939-16949, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154246

ABSTRACT

A large bandwidth and high-efficiency subwavelength quarter-wave plate (QWP) is an indispensable component of an integrated miniaturized optical system. The bandwidth of existing plasmonic quarter-wave plates with a transmission efficiency of more than 50% is less than 320 nm in the near-infrared band. In this paper, a metallic quarter-wave plate with a bandwidth of 600 nm (0.95-1.55 µm) and an average transmittance of more than 70% has been designed and shows excellent potential to be used in miniaturized optical polarization detection systems and as an optical data storage device. For TE mode incident waves, this miniaturized optical element can be equivalent to a Fabry-Pérot (FP) resonator. Meanwhile, for the TM mode incident wave, the transmission characteristics of this structure are controlled by gap surface plasmon polaritons (G-SPPs) existing in the symmetric metal/insulator/metal (MIM) configuration.

2.
Nanomaterials (Basel) ; 10(2)2020 Jan 27.
Article in English | MEDLINE | ID: mdl-32012691

ABSTRACT

Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretchability. Nevertheless, it is hard to take both sensitivity and stretchability into consideration for practical applications. Herein, we demonstrated a simple strategy to construct a highly sensitive and stretchable graphene-based strain sensor. According to the strain distribution in the simulation result, highly sensitive planar graphene and highly stretchable crumpled graphene (CG) were rationally connected to effectively modulate the sensitivity and stretchability of the device. For the stretching mode, the device showed a gauge factor (GF) of 20.1 with 105% tensile strain. The sensitivity of the device was relatively high in this large working range, and the device could endure a maximum tensile strain of 135% with a GF of 337.8. In addition, in the bending mode, the device could work in outward and inward modes. This work introduced a novel and simple method with which to effectively monitor sensitivity and stretchability at the same time. More importantly, the method could be applied to other material categories to further improve the performance.

3.
Nanoscale ; 12(5): 3343-3350, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31984404

ABSTRACT

A terahertz read-only in situ electrically-erasable rewritable photo-memory device based on a perovskite:Ag (perovskite with Ag nanoparticles added)/SnO2/PEDOT:PSS hetero-junction structure is reported. Under low optical excitation, considerable terahertz amplitude modulation in a perovskite:Ag/PEDOT:PSS hybrid structure was achieved. When a SnO2 nanoparticle film was inserted between the perovskite and PEDOT:PSS layer, the attenuation of the terahertz signal was weaker than that of the perovskite:Ag/PEDOT:PSS hybrid structure; however, the SnO2 nanoparticle film considerably prolonged the recovery time of the modulated terahertz wave in air after photo-excitation was stopped. In addition, when bias voltages were applied to the perovskite:Ag/PEDOT:PSS and perovskite:Ag/SnO2/PEDOT:PSS hybrid structures, respectively, the terahertz signals recovered rapidly for both structures. Consequently, the photo-memory functionality was achieved based on a perovskite:Ag/SnO2/PEDOT:PSS hybrid structure with an in situ method for erasing stored information.

4.
Materials (Basel) ; 11(12)2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30501019

ABSTRACT

Although the performance of hybrid organic-inorganic perovskite solar cells (PSCs) is encouraging, the detailed working principles and mechanisms of PSCs remain to be further studied. In this work, an overshoot phenomenon of open-circuit voltage (Voc) was observed when the illumination light pulse was switched off. The evolution of the Voc overshoot was systematically investigated along with the intensity and the width of the light pulse, the background illumination, and pretreatment by different bias. Based on the experimental results, we could conclude that the Voc overshoot originated from carrier motion against carrier collection direction, which happened at the ionic-accumulation-induced band bending areas near the interfaces between the perovskite active layer and the two carrier transport layers. The investigation on the Voc overshoot can help us to better understand ionic migration, carrier accumulation, and recombination of PSCs under open-circuit conditions.

5.
Opt Express ; 26(6): 7204-7210, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29609406

ABSTRACT

Active ultraviolet light-induced terahertz modulation of an indium oxide film is investigated. A large absorption modulation of ~66% is achieved upon illumination with a low intensity UV laser (11 mW/cm2). The interaction between indium oxide and a flexible metamaterial structure is investigated owing to the large UV-induced enhancement of photo carriers observed in an indium oxide film. We are able to realize absorption peak shifts of 37 GHz by changing the UV excitation light intensity. We also propose a multi-frequency switch by building a circular metallic split ring resonator whose gaps are filled with silicon, germanium, and indium oxide. In future, a photo-excited tunable multi-frequency metamaterial switch can be realized by irradiating the structure with multi-wavelength laser beam.

6.
Nanoscale Res Lett ; 9(1): 128, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24641989

ABSTRACT

An electrically bistable device has been fabricated based on poly(N-vinylcarbazole) (PVK)-silver sulfide (Ag2S) composite films using a simple spin-coating method. Current-voltage (I-V) characteristics of the as-fabricated devices exhibit a typical electrical bistability and negative differential resistance (NDR) effect. The NDR effect can be tuned by varying the positive charging voltage and the charging time. The maximum current ratio between the high-conducting state (ON state) and low-conducting state (OFF state) can reach up to 104. The carrier transport mechanisms in the OFF and ON states are described by using different models on the basis of the experimental result.

7.
Nano Lett ; 13(11): 5698-702, 2013.
Article in English | MEDLINE | ID: mdl-24164212

ABSTRACT

A photocatalytic strategy has been developed to synthesize colloidal Ag-TiO2 nanorod composites in which each TiO2 nanorod contains a single Ag nanoparticle on its surface. In this rational synthesis, photoexcitation of TiO2 nanorods under UV illumination produces electrons that reduce Ag(I) precursor and deposit multiple small Ag nanoparticles on the surface of TiO2 nanorods. Prolonged UV irradiation induces an interesting ripening process, which dissolves the smaller nanoparticles by photogenerated oxidative species and then redeposits Ag onto one larger and more stable particle attached to each TiO2 nanorod through the reduction of photoexcited electrons. The size of the Ag nanoparticles can be precisely controlled by varying the irradiation time and the amount of alcohol additive. The Ag-TiO2 nanorod composites were used as electron transport layers in the fabrication of organic solar cells and showed notable enhancement in power conversion efficiency (6.92%) than pure TiO2 nanorods (5.81%), as well as higher external quantum efficiency due to improved charge separation and transfer by the presence of Ag nanoparticles.


Subject(s)
Nanotubes/chemistry , Silver/chemistry , Titanium/chemistry , Catalysis , Light , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...