Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 401: 130709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636877

ABSTRACT

Low-temperature could inhibit the performance of anaerobic granular sludge (AnGS). Quorum sensing (QS), as a communication mode between microorganisms, can effectively regulate AnGS. In this study, a kind of embedded particles (PVA/SA@Serratia) based on signal molecule secreting bacteria was prepared by microbial immobilization technology based on polyvinyl alcohol and sodium alginate to accelerate the recovery of AnGS system after low temperature. Low-temperature shock experiment verified the positive effect of PVA/SA@Serratia on restoring the COD removal rate and methanogenesis capacity of AnGS. Further analysis by metagenomics analysis showed that PVA/SA@Serratia stimulated higher QS activity and promoted the secretion of extracellular polymeric substance (EPS) in AnGS. The rapid construction of EPS protective layer effectively accelerated the establishment of a robust microbial community structure. PVA/SA@Serratia also enhanced multiple methanogenic pathways, including direct interspecies electron transfer. In conclusion, this study demonstrated that PVA/SA@Serratia could effectively strengthen AnGS after low-temperature shock.


Subject(s)
Alginates , Cold Temperature , Polyvinyl Alcohol , Quorum Sensing , Sewage , Alginates/pharmacology , Alginates/chemistry , Polyvinyl Alcohol/chemistry , Sewage/microbiology , Anaerobiosis , Methane/metabolism
2.
Sci Total Environ ; 931: 172549, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38643881

ABSTRACT

The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores. Further mechanistic investigation revealed that the decrease in contact angle of fouled membrane surface in MF-MB-MBR, i.e. an enhanced membrane hydrophilicity, is considered important for forming highly permeable layers. Additionally, the magnetic field was demonstrated to have a positive effect on the improvement of the magneto-biological effect, the enhancement of charge neutralization and adsorption bridging between sludge and magnetic biochar, and the reduction of formation of extracellular polymeric substances (EPSs), which all yielded sludge flocs with a large pore structure conducive to form a fluffy and porous deposited layer in the membrane surface. Furthermore, high-throughput sequencing analysis revealed that the magnetic field also led to a reduction in microbial diversity, and that it promoted the enrichment of specific functional microbial communities (e.g. Bacteroidetes and Firmicutes) playing an important role in mitigating membrane fouling. Taken together, this study of magnetic field-enhanced magnetic biochar for MBR membrane fouling mitigation provides insights important new ideas for more effective and sustainable operation strategies.


Subject(s)
Biofouling , Bioreactors , Charcoal , Magnetic Fields , Membranes, Artificial , Microbiota , Bioreactors/microbiology , Charcoal/chemistry , Biofouling/prevention & control , Waste Disposal, Fluid/methods
3.
Sci Total Environ ; 923: 171550, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38461981

ABSTRACT

To reduce pollution and carbon emissions, a quantitative evaluation of the carbon footprint of the wastewater treatment processes is crucial. However, micro carbon element flow analysis is rarely focused considering treatment efficiency of different technology. In this research, a comprehensive carbon footprint analysis is established under the micro carbon element flow analysis and macro carbon footprint analysis based on life cycle assessment (LCA). Three wastewater treatment processes (i.e., anaerobic anoxic oxic, A2O; cyclic activated sludge technology, CAST; modified cyclic activated sludge technology, M-CAST) for low carbon source urban wastewater are selected. The micro key element flow analysis illustrated that carbon source mainly flows to the assimilation function to promote microorganism growth. The carbon footprint analysis illustrated that M-CAST as the optimal wastewater treatment process had the lowest global warming potential (GWP). The key to reduce carbon emissions is to limit electricity consumption in wastewater treatment processes. Under the comprehensive carbon footprint analysis, M-CAST has the lowest environmental impact with low carbon emissions. The sensitivity analysis results revealed that biotreatment section variables considerably reduced the environmental impact on the LCA and the GWP, followed by the sludge disposal section. With this research, the optimization scheme can guide wastewater treatment plants to optimize relevant treatment sections and reduce pollution and carbon emissions.

4.
Sci Total Environ ; 926: 171890, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521280

ABSTRACT

A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.


Subject(s)
Ammonium Compounds , Wastewater , Sewage/microbiology , Waste Disposal, Fluid , Anaerobiosis , Phosphorus , Carbon , Propionates , Denitrification , Bioreactors/microbiology , Nitrogen , Acetates , Glucose
5.
J Environ Manage ; 353: 120116, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38280251

ABSTRACT

Nutrient removal from sewage is transitioning to nutrient recovery. However, biological treatment technologies to remove and recover nutrients from domestic sewage are still under investigation. This study delved into the integration of ammonium assimilation with denitrifying phosphorus removal (DPR) as a method for efficient nutrient management in sewage treatment. Results indicated this approach eliminated over 80 % of the nitrogen in the influent, simultaneously recovering over 60 % of the nitrogen as the activated sludge through ammonia assimilation, and glycerol facilitated this process. The nitrification/denitrifying phosphorus removal ensured the stability of both nitrogen and phosphorus removal. The phosphorus removal rate exceeded 96 %, and the DPR rate reached over 90 %. Network analysis highlighted a stable community structure with Proteobacteria and Bacteroidota driving ammonium assimilation. The synergistic effect of fermentation bacteria, denitrifying glycogen-accumulating organisms, and denitrifying phosphorus-accumulating organisms contributed to the stability of nitrogen and phosphorus removal. This approach offers a promising method for sustainable nutrient management in sewage treatment.


Subject(s)
Ammonium Compounds , Water Purification , Sewage , Wastewater , Waste Disposal, Fluid/methods , Denitrification , Phosphorus , Bioreactors , Nitrification , Nutrients , Nitrogen
6.
Environ Res ; 243: 117884, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38072103

ABSTRACT

Environmental health problems caused by antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have become a global concern. ARB and ARGs have been continuously detected in various water environments, which pose a new challenge for water quality safety assurance. Disinfection is a key water treatment process to eliminate pathogenic microorganisms in water, and combined chlorine and UV processes (the UV/Cl2 process, the UV-Cl2 process, and the Cl2-UV process) are considered potential disinfection methods to control antibiotic resistance. This review documented the efficacy and mechanism of combined UV and chlorine processes for the control of antibiotic resistance, as well as the effects of chlorine dose, solution pH, UV wavelength, and water matrix on the effectiveness of the processes. There are knowledge gaps in research on the combined chlorine and UV processes for antibiotic resistance control, in particular the UV-Cl2 process and the Cl2-UV process. In addition, changes in the structure of microbial communities and the distribution of ARGs, which are closely related to the spread of antibiotic resistance in the water, induced by combined processes were also addressed. Whether these changes could lead to the re-transmission of antibiotic resistance and harm human health may need to be further evaluated.


Subject(s)
Chlorine , Water Purification , Humans , Chlorine/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Ultraviolet Rays , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Drug Resistance, Microbial/genetics , Disinfection/methods , Genes, Bacterial , Water Purification/methods , Anti-Bacterial Agents/pharmacology
7.
Water Res ; 250: 121057, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38157601

ABSTRACT

Extracellular polymeric substances (EPS) regulated by quorum sensing (QS) could directly mediate adhesion between microorganisms and form tight microbial aggregates. Besides, EPS have redox properties, which can facilitate electron transfer for promoting electroactive bacteria. Currently, the applications research on improving wastewater biological treatment performance based on QS regulated EPS have been widely reported, but reviews on the level of QS regulated EPS to enhance EPS function in microbial systems are still lacking. This work proposes the potential mechanisms of EPS synthesis by QS regulation from the viewpoint of material metabolism and energy metabolism, and summarizes the effects of QS on EPS synthesis. By synthesizing the role of QS in EPS regulation, we further point out the applications of QS-regulated EPS in wastewater biological treatment, which involve a series of aspects such as strengthening microbial colonization, mitigating membrane biofouling, improving the shock resistance of microbial metabolic systems, and strengthening the electron transfer capacity of microbial metabolic systems. According to this comprehensive review, future research on QS-regulated EPS should focus on the exploration of the micro-mechanisms, and economic regulation strategies for QS-regulated EPS should be developed, while the stability of QS-regulated EPS in long-term production experimental research should be further demonstrated.


Subject(s)
Quorum Sensing , Wastewater , Polymers , Sewage/microbiology , Bioreactors/microbiology
8.
J Environ Manage ; 347: 119111, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37774664

ABSTRACT

Ultrasonication allows sludge reduction to be performed in situ during wastewater treatment, and the reflux point of the lysed sludge affects this performance. This study investigated the effects of reflux point (anaerobic stage, carbon/nitrogen (C/N) lowest stage, and aerobic stage) on sludge lysis-cryptic growth in an anaerobic/aerobic reactor and variations in the sludge and microbial community. The best reflux point occurred at the lowest C/N ratio stage, and a 50.96% reduction in excess sludge was achieved. The reflux of the lysed sludge to the aerobic stage reduced nitrogen and phosphorus removal. The reflux of the lysed sludge decreased the average sludge size, reaching 29.2 µm when reflux to the aerobic stage. Scanning electron microscopy showed that the sludge surface was unaffected by the reflux point. The Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy results showed that the most prominent variation in the intensity of the sludge functional groups occurred when the reflux was at the lowest C/N stage. The amount of extracellular polymeric substances decreased the most during reflux to the anaerobic stage. The sludge microbial communities varied with the reflux point, and the dominant phyla during reflux to the anaerobic, lowest C/N, and aerobic stages were Bacteroidetes, Firmicutes, and Bacteroidetes, respectively. Furthermore, the reflux point did not alter the metabolic pathway of sludge microorganisms but increased the number of enzymes in metabolic pathways.


Subject(s)
Microbiota , Wastewater , Sewage/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Bioreactors , Nitrogen , Carbon
9.
Bioresour Technol ; 387: 129615, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37544542

ABSTRACT

The long duration of landfill stabilization is one of the challenges faced by municipalities. In this paper, a combination of micro-aeration and leachate recirculation is used to achieve rapid degradation of organic matter in landfill waste. The results showed that the content of volatile fatty acids (VFAs) in the hydrolysis phase increased significantly and could enter the methanogenic phase quickly. Until the end of the landfill, the removal rates of chemical oxygen demand (COD), total phosphorus (TP) and ammonia nitrogen (NH4+-N) by micro-aeration and leachate recirculation reached 80.17 %, 48.30 % and 48.56 %, respectively, and the organic matter degradation rate reached 50 %. Micro-aeration and leachate recirculation enhanced the abundance of facultative hydrolytic bacteria such as Rummeliibacillus and Bacillus and the oxygen tolerance of Methanobrevibacter and Methanoculleus. Micro-aeration and leachate recirculation improved the organic matter degradation efficiency of landfill waste by promoting the growth of functional microorganisms.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Hydrolysis , Waste Disposal Facilities , Bacteria/metabolism , Hydrogen-Ion Concentration , Acceleration , Water Pollutants, Chemical/chemistry , Refuse Disposal/methods , Bioreactors
10.
Bioresour Technol ; 387: 129644, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37558106

ABSTRACT

Anaerobic granular sludge (AnGS) has a complex and important internal microbial communication system due to its unique microbial layered structure. As a concentration-dependent communication system between bacterial cells through signal molecules, QS (quorum sensing) is widespread in AnGS and exhibits great potential to regulate microbial behaviors. Therefore, the universal functions of QS in AnGS have been systematically summarized in this paper, including the influence on the metabolic activity, physicochemical properties, and microbial community of AnGS. Subsequently, the common QS-based AnGS regulation approaches are reviewed and analyzed comprehensively. The regulation mechanism of QS in AnGS is analyzed from two systems of single bacterium and mixed bacteria. This review can provide a comprehensive understanding of QS functions in AnGS systems, and promote the practical application of QS-based strategies in optimization of AnGS treatment process.


Subject(s)
Microbiota , Sewage , Sewage/microbiology , Quorum Sensing , Anaerobiosis , Bacteria/metabolism
11.
Chemosphere ; 341: 139995, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652241

ABSTRACT

As two emerging pollutants of great concern, microplastics (MPs) and antibiotics inevitably cooccur in various aquatic environments and interact with each other, impacting the fate and ecological risks. Aging obviously complicates their interaction and deserves further study. Therefore, the adsorption-desorption behaviors of ciprofloxacin (CIP) onto polystyrene (PS) fragments with various aging extent were investigated, and the key physiochemical properties influencing the interaction and the interaction mechanisms were clarified by redundancy analysis, FTIR and XPS spectra. The physicochemical properties of PS MPs were significantly changed with aging time, and the morphological and chemical changes seemed to occur asynchronously. The adsorption of CIP onto the pristine PS MPs relied on physisorption, especially the ion-involving electrostatic and cation-π interaction. Due to the hydrogen bonding formed by the C-OH, CO, and O-CO groups of PS and CIP, the adsorption capacities of the aged PS MPs were greatly increased. The desorption efficiency of CIP from MPs in the gastric fluid was closely related to the solution ionic strengths, C-OH and CO groups of MPs, while that in the intestinal fluid was associated with O-CO groups of MPs. The different impact factors could be well described by the differences in the chemical components and pHs of the simulated gastric and intestinal fluids. This study gives a comprehensive understanding of the adsorption-desorption behaviors of antibiotics onto MPs at a molecular level and indicates that MPs could act as Trojan horses to transport antibiotics into aquatic organisms.


Subject(s)
Polystyrenes , Water Pollutants, Chemical , Polystyrenes/analysis , Plastics/chemistry , Ciprofloxacin/analysis , Adsorption , Water Pollutants, Chemical/analysis , Microplastics/chemistry , Anti-Bacterial Agents
12.
Sci Total Environ ; 878: 163155, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37001653

ABSTRACT

Food waste (FW) anaerobic digestion systems are prone to imbalance during long-term operation, and the imbalance mechanism is complex. Anaerobic co-digestion (AcoD) of FW and other substrates can overcome the performance limitations of single digestion, allowing for the mutual use of multiple wastes and resource recovery. Research on the AcoD of FW has been widely conducted and successfully applied to a practical engineering scale. Therefore, this review describes the research progress of AcoD of FW with other substrates. By analyzing the problems and challenges faced by AcoD of FW, the synergistic effects and influencing factors of different biomass wastes are discussed, and improvement strategies to improve the performance of AcoD of FW are summarized from different reaction stages of anaerobic digestion. By combing the research progress of AcoD of FW, it provides a reference for the optimization and improvement of the performance of the co-digestion system.


Subject(s)
Refuse Disposal , Food , Anaerobiosis , Bioreactors , Methane , Digestion , Sewage
13.
J Hazard Mater ; 446: 130693, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36592558

ABSTRACT

Photocatalytic oxygen activation is an excellent strategy for algae control in water. However, the fast recombination of photogenerated charge and slow rate of oxygen transfer limit the reactive oxygen species generation efficiency for algae inactivation. Herein, to solve above issues, magnetic field was introduced to the BiO2-x/Bi3NbO7 system to effectively covert oxygen into reactive radicals. The electrochemical experiment and DFT calculation results indicated the charge separation could be accelerated by the Lorentz force generated by the magnetic field, resulting in increase of electron concentration. Meanwhile, the value of volumetric gas-liquid mass transfer coefficient was increased by 59.79 % with magnetic field, thus more oxygen could be reduced to superoxide radical. Photocatalytic algae inactivation rate by BiO2-x/Bi3NbO7 with magnetic field could be increased by 2.07 times than that without magnet filed. This work further extends the strategy of using magnetic field to simultaneously facilitate the charge separation and oxygen transfer rate.


Subject(s)
Light , Oxygen , Physical Phenomena
14.
Bioresour Technol ; 367: 128254, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334870

ABSTRACT

For solving the challenge of difficult nutrient removal, high running cost and CO2 emission at low carbon-to-nitrogen (C:N) ratio, Bi-Bio-Selector for nitrogen and phosphorus removal (BBSNP) process was developed. Under parallel operation conditions, full-scale BBSNP was less influence by low C:N ratio (3.5-2) than Anaerobic-anoxic-aerobic (AAO) and achieved better nitrogen removal performance. The mechanism of performance advantage in BBSNP was analyzed by mass balance and high throughout sequencing. It demonstrated BBSNP developed unique microbial community at C:N ratio of 2. Higher abundance of Saccharibacteria, Ferruginibacter, Ottowia, Dokdonella, Candidatus_Nitrotoga and Nitrospira in BBSNP was responsible for better chemical oxygen demand (COD) utilization efficiency, denitrification, denitrifying phosphorus removal and nitrification. Meanwhile, under low C:N ratio, BBSNP could save 10% organic carbon and 15% oxygen requirement, reduce 53% running cost and 21% CO2 emission, which had practical value in relieving energy crisis and carbon emission of wastewater treatment plants (WWTPs).


Subject(s)
Nitrogen , Wastewater , Carbon , Denitrification , Waste Disposal, Fluid , Carbon Dioxide , Bioreactors/microbiology , Nitrification , Phosphorus , Nutrients , Bacteria , Sewage
15.
J Hazard Mater ; 445: 130364, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36463742

ABSTRACT

Intimately coupled photocatalysis and biodegradation (ICPB) is an emerging technology that has potential applications in the degradation of bio-recalcitrant pollutants. However, the interaction principles between photocatalysts and biofilms in ICPB have not been well developed. This article covers a cooperative degradation scheme coupling photocatalysis and biodegradation for efficient degradation and mineralization of ciprofloxacin (CIP) using ICPB with B-doped Bi3O4Cl as the photocatalyst. In consequence, a removal rate of ∼95 % is reached after 40 d. The biofilms inside the ICPB carriers can mineralize the photocatalytic products, thus improving the removal rate of total organic carbon (TOC) by more than 20 %. Interior biofilms are not destroyed by CIP or photocatalysis, and they adapt to ICPB of CIP by enriching in Pseudoxanthomonas, Ferruginibacter, Clostridium, Stenotrophomonas and Comamonas and reconstructing their microbial communities using energy produced by the light-excited photoelectrons. Furthermore, this research gives new opinion into the degradation principles of the ICPB system.


Subject(s)
Ciprofloxacin , Wastewater , Biodegradation, Environmental , Biofilms , Anti-Bacterial Agents , Catalysis
16.
Sci Total Environ ; 857(Pt 2): 159535, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36270376

ABSTRACT

The landfill is still the primary waste treatment method in developing countries. Due to the long stability time and long-term occupation of a large amount of land, the landfill poses a significant threat to the ecological environment and affects the process of urbanization. This study conducted a landfill simulation reactor (LSR) experiment to achieve rapid landfill stabilization through micro-aeration and leachate recirculation. More than 60 % of the degradable organic carbon in the enhanced process (LSR-IV contains 24 % of the retained carbon) can be relatively quickly converted to a gaseous state, which is nearly half higher than the degradation efficiency of the traditional process (LSR-I contains 59.3 % of the retained carbon). A comprehensive environmental assessment is developed for the enhanced process, and better environmental benefits are obtained from the whole landfill process. Compared with conventional treatment process, the enhanced process is applied to the actual landfill to analyze the economic cost. In terms of the total cost, the enhanced process cost (60.1 CNY) is about 44 % lower than the conventional landfill process cost (107.6 CNY). The enhanced process saves nearly half of the time cost and reduces the cost of land acquisition. This study can provide a reference for governmental and municipal administrations to carry out the technological transformation of traditional landfills from the aspects of technology, economy and environment.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Refuse Disposal/methods , Solid Waste/analysis , Water Pollutants, Chemical/analysis , Waste Disposal Facilities , Carbon , Bioreactors
17.
J Environ Manage ; 316: 115213, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35561493

ABSTRACT

To enhance the decolorization of methyl orange (MO), Fe-N complex biochar (Fe-N-BC) was developed as an accelerator in the sodium sulfide (Na2S) reduction system. The decolorization effect and mechanism of MO in the Fe-N-BC/Na2S composite system were studied. Surface pore analysis, Raman spectroscopy, FT-IR, XPS, and electrochemical analysis were used to characterize Fe-N-BC and unmodified biochar (BC). These results demonstrated that Fe-N-BC had better adsorption performance (specific surface area 463.46 m2 g-1) and electron transfer capacity than BC. By adding Fe-N-BC to the Na2S reduction system for MO, it was found that the decolorization of MO was greatly improved (increased by 93%). Besides, the effects of critical factors such as the initial concentration of Na2S, the dosage of Fe-N-BC, pH value, and temperature on the decolorization rate of MO were evaluated. Through the analysis of the action mechanism, the cooperation mode of Fe-N-BC and Na2S was to form an infinite cycle of adsorption-reduction-regeneration, so as to realize the rapid decolorization of MO. On the one hand, Fe-N-BC could adsorb MO and Na2S on its surface to increase the contact opportunity; on the other hand, it could act as a redox mediator to accelerate the electron transfer of the reduction reaction. In addition, the degradation of MO by Na2S was also an in-situ regeneration of Fe-N-BC. These findings may provide a feasible method to decolorize azo dyes quickly by cooperating with chemical reducing agents from a new perspective.


Subject(s)
Water Pollutants, Chemical , Adsorption , Azo Compounds , Charcoal , Iron/chemistry , Spectroscopy, Fourier Transform Infrared , Sulfides , Water Pollutants, Chemical/chemistry
18.
J Environ Manage ; 301: 113859, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34597949

ABSTRACT

In order to strengthen the treatment of low-concentration ammonia nitrogen wastewater at low temperature, iron-loaded activated carbon (Fe-AC) with ultrasonic impregnation method was used as the filter material of biofilter process. The performance and mechanism of ammonia nitrogen removal from simulated secondary wastewater by iron-loaded biological activated carbon filter (Fe-BACF) were studied at 10 °C. The characterization results showed that iron was loaded on the surface of AC in the form of Fe2O3, and the specific surface area, total pore volume, pore size and alkaline functional group content of Fe-AC were obviously increased. After the formation of biofilm on the surface of filter media, the average removal rate of ammonia nitrogen by Fe-BACF (97.9%) was significantly higher than that of conventional BACF (87.8%). The improved surface properties increased the number and metabolic activity of microorganisms, and promoted the secretion of EPS on the surface of Fe-BAC. The results of high-throughput sequencing showed that the existence of Fe optimized the bacterial community structure on the surface of Fe-BAC, with the increase of the abundances of psychrophilic bacteria and ammonia nitrogen removal bacteria. The mechanism of enhanced ammonia nitrogen removal by Fe-BACF was the joint action of many factors, among which the main causal relationship was that modification of iron could optimize the number and category of microorganisms on Fe-BAC surface by improving the surface properties, thus improving the biological nitrogen removal ability. Results of this study provided a practical way for the treatment of low ammonia nitrogen wastewater in cold regions.


Subject(s)
Ammonia , Wastewater , Ammonia/analysis , Bioreactors , Charcoal , Denitrification , Filtration , Iron , Nitrogen/analysis , Temperature
19.
Bioresour Technol ; 337: 125362, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34116280

ABSTRACT

So as to accelerate the resuscitation of starved anaerobic granular sludge after long-term stagnation, an innovative method was tried derived from the regulation of N-acyl-homoserine lactones (AHLs)-mediated quorum sensing (QS). The mixture of four AHLs was added to the starved anaerobic granular sludge system in this research. The results confirmed that the exogenous AHLs shortened the recovery time of the granular sludge, and improved the treatment performance and methanogenic capacity of the recovered anaerobic sludge to the level before stagnation. At the same time, exogenous AHLs enhanced the synthesis of extracellular polymeric substances (EPS) during the resuscitation period of starved anaerobic granular sludge. The outcomes of microbial composition detection showed that the change of bacterial and methanogenic bacteria communities towards accelerated performance recovery was significantly correlated with exogenous AHLs. This exploration provided a new technical idea for speeding up the recovery of starved anaerobic granular sludge.


Subject(s)
Acyl-Butyrolactones , Sewage , Anaerobiosis , Extracellular Polymeric Substance Matrix , Lactones , Quorum Sensing
20.
Chemosphere ; 262: 127895, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32799151

ABSTRACT

In order to improve the adsorption efficiency of ammonia nitrogen in low temperature wastewater, the modified activated carbon (Fe-AC) was prepared by impregnation-calcination modification of Fe(NO3)3. The characterization results indicated that the total pore volume, specific surface area and the point of zero charge of activated carbon increased after modification. A better adsorption effect was achieved under neutral condition than under alkaline or acidic condition. The effect of Ca2+ on competitive adsorption of NH4+ was greater than that of Na+ when both cations were present. Pseudo-first-order kinetic model was confirmed to be consistent with Fe-AC adsorption kinetic data, and Langmuir model was consistent with adsorption isotherm data. The adsorption thermodynamics demonstrated that the ammonia nitrogen adsorption process by Fe-AC was spontaneous and low-temperature was helpful to improve the adsorption capacity. The mechanism of adsorption of ammonia nitrogen by Fe-AC was the comprehensive effect of physical adsorption and chemical adsorption, which was the essential reason for improving the adsorption efficiency of ammonia nitrogen by Fe-AC at a low temperature. This research offered a new way for the modification of activated carbon and a new method for the removal of ammonia nitrogen at a low temperature.


Subject(s)
Ammonia/chemistry , Charcoal/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Cold Temperature , Iron/chemistry , Kinetics , Nitrogen/chemistry , Temperature , Thermodynamics , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...