Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38400261

ABSTRACT

In the field of inter-satellite laser communication, achieving high-quality communication and compensating for the Doppler frequency shift caused by relative motion necessitate lasers with narrow linewidths, low phase noise, and the ability to achieve mode-hop-free tuning within a specific range. To this end, this paper investigates a novel external cavity diode laser (ECDL) with a frequency-selective F-P etalon structure, leveraging the external cavity F-P etalon structure in conjunction with an auxiliary filter to achieve single longitudinal mode selection. The laser undergoes linewidth testing using a delayed self-heterodyne beating method, followed by the testing of its phase noise and frequency noise characteristics using a noise analyzer, yielding beat spectra and noise power spectral density profiles. Furthermore, the paper introduces an innovative bidirectional temperature-scanning laser method to achieve optimal laser-operating point selection and mode-hop-free tuning. The experimental results showcase that the single longitudinal mode spectral side-mode suppression ratio (SMSR) is around 70 dB, and the output power exceeds 10 mW. Enhancing the precision of the F-P etalon leads to a more pronounced suppression of low-frequency phase noise, reducing the Lorentzian linewidth from the initial 10 kHz level to a remarkable 5 kHz level. The bidirectional temperature-scanning laser method not only allows for the selection of the optimal operating point but also enables mode-hop-free tuning within 160 pm.

2.
Sensors (Basel) ; 23(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37837130

ABSTRACT

In order to investigate the factors affecting the acoustic performance of the extrinsic Fabry-Perot interferometer (EFPI) fiber-optic acoustic pressure sensor and to effectively improve its detection capability, this paper enhances the sensor's detection sensitivity by adding more sensitized rings to its acoustic pressure-sensitive film. Furthermore, a novel real-time coupled acoustic test method is proposed to simultaneously monitor the changes in the spectral and acoustic metrics of the sensor to characterize its overall performance. Finally, an EFPI-type fiber-optic acoustic pressure sensor was developed based on the Micro-Optical Electro-Mechanical System (MOEMS). The acoustic tests indicate that the optimized fiber-optic acoustic pressure sensor has a sensitivity as high as 2253.2 mV/Pa, and the acoustic overload point (AOP) and signal-to-noise ratios (SNRs) can reach 108.85 dB SPL and 79.22 dB, respectively. These results show that the sensor produced through performance characterization experiments and subsequent optimization has a very high acoustic performance index, which provides a scientific theoretical basis for improving the overall performance of the sensor and will have broad application prospects in the field of acoustic detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...