Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 70(5): 400-413, 2024 May.
Article in English | MEDLINE | ID: mdl-38301267

ABSTRACT

Newborns with intrauterine growth restriction (IUGR) have a higher likelihood of developing pulmonary arterial hypertension (PAH) in adulthood. Although there is increasing evidence suggesting that pericytes play a role in regulating myofibroblast transdifferentiation and angiogenesis in malignant and cardiovascular diseases, their involvement in the pathogenesis of IUGR-related pulmonary hypertension and the underlying mechanisms remain incompletely understood. To address this issue, a study was conducted using a Sprague-Dawley rat model of IUGR-related pulmonary hypertension. Our investigation revealed increased proliferation and migration of pulmonary microvascular pericytes in IUGR-related pulmonary hypertension, accompanied by weakened endothelial-pericyte interactions. Through whole-transcriptome sequencing, Ddx5 (DEAD-box protein 5) was identified as one of the hub genes in pericytes. DDX5, a member of the RNA helicase family, plays a role in the regulation of ATP-dependent RNA helicase activities and cellular function. MicroRNAs have been implicated in the pathogenesis of PAH, and microRNA-205 (miR-205) regulates cell proliferation, migration, and angiogenesis. The results of dual-luciferase reporter assays confirmed the specific binding of miR-205 to Ddx5. Mechanistically, miR-205 negatively regulates Ddx5, leading to the degradation of ß-catenin by inhibiting the phosphorylation of Gsk3ß at serine 9. In vitro experiments showed the addition of miR-205 effectively ameliorated pericyte dysfunction. Furthermore, in vivo experiments demonstrated that miR-205 agomir could ameliorate pulmonary hypertension. Our findings indicated that the downregulation of miR-205 expression mediates pericyte dysfunction through the activation of Ddx5. Therefore, targeting the miR-205/Ddx5/p-Gsk3ß/ß-catenin axis could be a promising therapeutic approach for IUGR-related pulmonary hypertension.


Subject(s)
Cell Proliferation , DEAD-box RNA Helicases , Epigenesis, Genetic , Fetal Growth Retardation , Glycogen Synthase Kinase 3 beta , Hypertension, Pulmonary , MicroRNAs , Pericytes , Rats, Sprague-Dawley , Animals , Female , Humans , Male , Rats , beta Catenin/metabolism , beta Catenin/genetics , Cell Movement/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Pericytes/metabolism , Pericytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...