Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 303: 116025, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36496042

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Berberis amurensis Rupr. is used to treat cancer as a traditional herbal medicine. Berbamine (BBM) is a natural bisbenzylisoquinoline alkaloid extracted from Berberis amurensis which possesses multiple pharmacological activity including anticancer. AIM OF THE STUDY: To investigate the influence of BBM on the progression of colorectal cancer (CRC) and further explore the underlying mechanism of BBM based on the RTKs/Akt signaling pathway. MATERIALS AND METHODS: In vitro, cell viability and colony formation were conducted to detect BBM inhibitory of CRC cell lines. Transwell was detected the ability of migration and invasion by BBM. Apoptosis detection assay, cell cycle assay and the measurement of ROS were detected to confirm the inductive effect of cell apoptosis. RT-qPCR and Western blot to clarify the specific mechanism of anticancer. Finally, we conducted HE staining, Ki67, Tunnel and immunochemistry were confirmed the anti-colorectal cancer activity of BBM from vivo study. RESULTS: We found that BBM could inhibit CRC cell lines growth. Moreover, BBM presented an inhibitory effect the ability of migration and invasion in CRC cells. Furthermore, the occurrence of apoptosis was involved in the anti-colorectal cancer role of BBM. BBM also triggered ROS accumulation in CRC cells that might be a key factor for the inductive effect of BBM in cell apoptosis. Cell cycle assay revealed that BBM induced the arrest of G1-S phase and increased the p21 levels but decreased CyclinE1, CyclinE2, CDK6, CyclinD1. RT-qPCR manifested that the down-regulation effect of BBM on AKT1, EGFR, PDGFRα and FGFR4 genes. The results also showed that BBM could decreased the expression levels of phosphor-AKT, PDGFRα, PDGFRß, EGFR, FGFR3 and FGFR4 which belong to RTKs family. Consistently, BBM remarkably suppressed tumor xenograft growth in nude mice. CONCLUSION: Taken together, all the results as presented above suggest that BBM as a novel multitargeted receptor tyrosine kinase inhibitor plays a crucial role in the inhibitory effect of CRC and may be a promising therapeutic agent for the CRC in clinic.


Subject(s)
Benzylisoquinolines , Colorectal Neoplasms , Mice , Animals , Humans , Proto-Oncogene Proteins c-akt/metabolism , Mice, Nude , Reactive Oxygen Species , Receptor, Platelet-Derived Growth Factor alpha , Colorectal Neoplasms/pathology , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Apoptosis , ErbB Receptors/metabolism , Cell Proliferation , Cell Line, Tumor , Cell Movement
2.
J Int Med Res ; 49(6): 3000605211013548, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34187214

ABSTRACT

OBJECTIVE: Long non-coding RNA (lncRNA) expression is closely related to the pathogenesis and progression of various tumors. In this study, we investigated the mechanisms of lncRNA HOXB cluster antisense RNA 3 (HOXB-AS3), miRNA(miR)-498-5p, and disintegrin and metalloproteinase domain-containing protein 9 (ADAM9) in endometrial carcinoma (EC) cells. METHODS: The expression levels of lncRNA HOXB-AS3 in EC tissues and cells were detected using RT-qPCR assays. The effects of HOXB-AS3 knockdown on EC cell proliferation and apoptosis were measured using CCK-8 assays, colony formation assays, and flow cytometry. In addition, putative miR-498-5p binding sites were identified in HOXB-AS3 and ADAM9. The targeted relationships were further verified using dual-luciferase reporter and RNA pull-down assays. RESULTS: HOXB-AS3 expression was upregulated in EC tissues and cells. EC cell proliferation and viability decreased significantly in HOXB-AS3 knockdown groups. A putative miR-498-5p binding site in HOXB-AS3 was verified. Inhibition of miR-498-5p rescued the effects of HOXB-AS3 knockdown on cell proliferation and apoptosis. Finally, ADAM9 was verified as a direct target gene of miR-498-5p. CONCLUSIONS: Our results suggest that lncRNA HOXB-AS3 is highly expressed in EC tissues and cells. Downregulation of HOXB-AS3 inhibits cell proliferation and promotes apoptosis in EC cells. HOXB-AS3 can upregulate ADAM9 expression by sponging miR-498-5p.


Subject(s)
Endometrial Neoplasms , MicroRNAs , RNA, Long Noncoding , ADAM Proteins/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Endometrial Neoplasms/genetics , Female , Homeodomain Proteins , Humans , Membrane Proteins/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...