Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0301666, 2024.
Article in English | MEDLINE | ID: mdl-38564570

ABSTRACT

PURPOSE: This study aimed to investigate the mediating role of fear of progression on illness perception and social alienation among maintenance hemodialysis (MHD) patients. BACKGROUND: MHD is frequently accompanied by increased pain and complications such as itchy skin, chronic fatigue, and muscle spasms. Cardiovascular disease rates are also elevated among MHD patients, which can heighten their anxiety regarding prognosis and treatment discomfort. This chronic fear may severely impact social functioning, leading patients to withdraw from interpersonal interactions and experience heightened helplessness and loneliness. Further investigation is necessary to understand the factors behind the high level of social alienation in MHD patients and their underlying mechanisms. DESIGN: A cross-sectional study guided by the STROBE. METHODS: A convenience sample of 230 MHD patients were enrolled from January to May 2023. Data including demographic and clinical characteristics, illness perception, fear of progression, and social alienation were collected. Descriptive analysis and Pearson correlations were conducted using IBM SPSS version 25.0. The mediating effect was analyzed using Model 4 of the PROCESS macro for SPSS, with the Bootstrap method employed to assess its significance. RESULTS: The score of social alienation in MHD patients was high, with illness perception and fear of progression both significantly correlated with social alienation. In the mediating effects model, illness perception can predict social alienation in MHD patients, and fear of progression use plays a part in mediating the process by which illness perception affects social alienation. The Kappa Squared (κ2) value of 21.9%, suggests a medium effect size. CONCLUSIONS: Illness perception directly predicts social alienation in MHD patients and exerts an indirect effect through the mediating role of fear of progression. Suggests that healthcare professionals should concentrate on MHD patients with high negative illness perceptions to alleviate their fear of progression, thereby decreasing the level of social alienation and enhancing their integration into society.


Subject(s)
Renal Dialysis , Social Alienation , Humans , Cross-Sectional Studies , Fear , Perception
2.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203267

ABSTRACT

As a plant-specific transcription factor, the SPL gene family plays a critical role in plant growth and development. Although the SPL gene family has been identified in diverse plant species, there have been no genome-wide identification or systematic study reports on the SPL gene family in Catalpa bungei. In this study, we identified 19 putative SPL gene family members in the C. bungei genome. According to the phylogenetic relationship, they can be divided into eight groups, and the genes in the same group have a similar gene structure and conserved motifs. Synteny analysis showed that fragment duplication played an important role in the expansion of the CbuSPL gene family. At the same time, CbuSPL genes have cis-acting elements and functions related to light response, hormone response, growth and development, and stress response. Tissue-specific expression and developmental period-specific expression analysis showed that CbuSPL may be involved in flowering initiation and development, flowering transition, and leaf development. In addition, the ectopic expression of CbuSPL4 in Arabidopsis confirmed that it can promote early flowering and induce the expression of related flowering genes. These systematic research results will lay a foundation for further study on the functional analysis of SPL genes in C. bungei.


Subject(s)
Arabidopsis , Lepidoptera , Animals , Transcription Factors/genetics , Phylogeny , Gene Expression Regulation , Promoter Regions, Genetic , Arabidopsis/genetics
3.
Cell Biosci ; 12(1): 115, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35869528

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) are heterogeneous populations. Heterogeneity exists within the same tissue and between different tissues. Some studies have found enormous heterogeneity in immunomodulatory function among MSCs derived from different tissues. Moreover, the underlying mechanism of heterogeneity in immunomodulatory abilities is still unclear. METHODS: Foreskin mesenchymal stromal cells (FSMSCs) and human umbilical cord mesenchymal stromal cells (HuMSCs) were isolated and cultured until the third passage. According to the International Association for Cell Therapy standard, we confirmed the cell type. Then, FSMSCs and HuMSCs were cocultured with human peripheral blood mononuclear cells (PBMCs) stimulated by lipopolysaccharide (LPS) in vitro. Furthermore, the supernatant was sampled for an enzyme-linked immunosorbent assay to investigate the secretion of IL-1ß, IL-6, IL-10, TNF-α, and TGF-ß1. Finally, we performed single-cell RNA sequencing (scRNA-seq) of FSMSCs and HuMSCs. RESULTS: We successfully identified FSMSCs and HuMSCs as MSCs. When cocultured with LPS pretreated PBMCs, FSMSCs and HuMSCs could effectively reduced the secretion of IL-1ß and TNF-α. However, FSMSCs stimulated the PBMCs to secrete more IL-10, TGF-ß1, and IL-6. Furthermore, 4 cell subsets were identified from integrated scRNA-seq data, including proliferative MSCs (MKI67+, CD146low+, NG2+, PDGFRB-), pericytes (CD146high+, PDGFRB+, MKI67-, CD31-, CD45-, CD34-), immune MSCs (CXCL12high+, PTGIShigh+, PDGFRB+, CD146-, MKI67-) and progenitor proliferative MSCs (CXCL12low+, PTGISlow+, PDGFRB+, CD146-, MKI67-). Among them, we found that immune MSCs with strengthened transcriptional activity were similar to pericytes with regard to the degree of differentiated. Various of immune-related genes, gene sets, and regulons were also enriched in immune MSCs. Moreover, immune MSCs were determined to be close to other cell subsets in cell-cell communication analysis. Finally, we found that the proportion of immune MSCs in foreskin tissue was highest when comparing the subset compositions of MSCs derived from different tissues. CONCLUSIONS: FSMSCs show better immunomodulatory capacity than HuMSCs in vitro. Moreover, immune MSCs may play a vital role in the heterogeneity of immunoregulatory properties. This study provides new insights suggesting that immune MSCs can be isolated to exert stable immunoregulatory functions without being limited by the heterogeneity of MSCs derived from different tissues.

4.
Front Genet ; 13: 798331, 2022.
Article in English | MEDLINE | ID: mdl-35360851

ABSTRACT

Background: Mesenchymal stromal cells (MSCs) and fibroblasts show similar morphology, surface marker expression, and proliferation, differentiation, and immunomodulatory capacities. These similarities not only blur their cell identities but also limit their application. Methods: We performed single-cell transcriptome sequencing of the human umbilical cord and foreskin MSCs (HuMSCs and FSMSCs) and extracted the single-cell transcriptome data of the bone marrow and adipose MSCs (BMSCs and ADMSCs) from the Gene Expression Omnibus (GEO) database. Then, we performed quality control, batch effect correction, integration, and clustering analysis of the integrated single-cell transcriptome data from the HuMSCs, FMSCs, BMSCs, and ADMSCs. The cell subsets were annotated based on the surface marker phenotypes for the MSCs (CD105 + , CD90 +, CD73 +, CD45 -, CD34 -, CD19 -, HLA-DRA -, and CD11b -), fibroblasts (VIM +, PECAM1 -, CD34 -, CD45 -, EPCAM -, and MYH11 -), and pericytes (CD146 +, PDGFRB +, PECAM1 -, CD34 -, and CD45 -). The expression levels of common fibroblast markers (ACTA2, FAP, PDGFRA, PDGFRB, S100A4, FN1, COL1A1, POSTN, DCN, COL1A2, FBLN2, COL1A2, DES, and CDH11) were also analyzed in all cell subsets. Finally, the gene expression profiles, differentiation status, and the enrichment status of various gene sets and regulons were compared between the cell subsets. Results: We demonstrated 15 distinct cell subsets in the integrated single-cell transcriptome sequencing data. Surface marker annotation demonstrated the MSC phenotype in 12 of the 15 cell subsets. C10 and C14 subsets demonstrated both the MSC and pericyte phenotypes. All 15 cell subsets demonstrated the fibroblast phenotype. C8, C12, and C13 subsets exclusively demonstrated the fibroblast phenotype. We identified 3,275 differentially expressed genes, 305 enriched gene sets, and 34 enriched regulons between the 15 cell subsets. The cell subsets that exclusively demonstrated the fibroblast phenotype represented less primitive and more differentiated cell types. Conclusion: Cell subsets with the MSC phenotype also demonstrated the fibroblast phenotype, but cell subsets with the fibroblast phenotype did not necessarily demonstrate the MSC phenotype, suggesting that MSCs represented a subclass of fibroblasts. We also demonstrated that the MSCs and fibroblasts represented highly heterogeneous populations with distinct cell subsets, which could be identified based on the differentially enriched gene sets and regulons that specify proliferating, differentiating, metabolic, and/or immunomodulatory functions.

5.
Springerplus ; 5(1): 1552, 2016.
Article in English | MEDLINE | ID: mdl-27652125

ABSTRACT

Mature embryo is an excellent explant for tissue culture as it is convenient to be obtained without limitation of growing seasons and development stages. However, regeneration ability of the calli from wheat mature embryos is limited, thus hindering its application. To identify genes associated with the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were detected using a recombinant inbred lines (RILs) population derived from the cross between a synthetic hexaploid wheat genotype, SHW-L1 and a commercial cultivar Chuanmai 32. Three QTLs for callus rate were identified and they were located on chromosomes 1D, 5A, and 6D, respectively, with explained phenotypic variation ranging from 10.16 to 11.82 %. One QTL for differentiation rate was detected only with 10.96 % of the phenotypic variation explained. Two QTLs for emergence rate were identified and they were located on 3B and 4A, respectively, with 9.88 and 10.30 % of phenotypic variation. The results presented in this study with those reported previously indicated that group 1, 3, and 5 chromosomes are likely to play important roles in TCR of wheat.

SELECTION OF CITATIONS
SEARCH DETAIL
...