Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Antioxid Redox Signal ; 40(7-9): 433-452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37265154

ABSTRACT

Aims: Studies demonstrated that oxidized fish oil (OFO) promoted oxidative stress and induced mitochondrial dysfunction and lipotoxicity, which attenuated beneficial effects of fish oil supplements in the treatment of nonalcoholic fatty liver disease (NAFLD). The current study was performed on yellow catfish, a good model to study NAFLD, and its hepatocytes to explore whether selenium (Se) could alleviate OFO-induced lipotoxicity via the inhibition of oxidative stress and determine its potential mechanism. Results: The analysis of triglycerides content, oxidative stress parameters, and histological and transmission electronic microscopy observation showed that high dietary Se supplementation alleviated OFO-induced lipotoxicity, oxidative stress, and mitochondrial injury and dysfunction. RNA-sequencing and immunoblotting analysis indicated that high dietary Se reduced OFO-induced decline of peroxisome-proliferator-activated receptor alpha (Pparα) and ubiquitin-specific protease 4 (Usp4) protein expression. High Se supplementation also alleviated OFO-induced reduction of thioredoxin reductase 2 (txnrd2) messenger RNA (mRNA) expression level and activity. The txnrd2 knockdown experiments revealed that txnrd2 mediated Se- and oxidized eicosapentaenoic acid (oxEPA)-induced changes of mitochondrial reactive oxygen species (mtROS) and further altered Usp4 mediated-deubiquitination and stabilization of Pparα, which, in turn, modulated mitochondrial fatty acid ß-oxidation and metabolism. Mechanistically, Usp4 deubiquitinated Pparα and ubiquitin-proteasome-mediated Pparα degradation contributed to oxidative stress-induced mitochondrial dysfunction. Innovation: These findings uncovered a previously unknown mechanism by which Se and OFO interacted to affect lipid metabolism via the Txnrd2-mtROS-Usp4-Pparα pathway, which provides the new target for NAFLD prevention and treatment. Conclusion: Se ameliorated OFO-induced lipotoxicity via the inhibition of mitochondrial oxidative stress, remodeling of Usp4-mediated deubiquitination, and stabilization of Pparα. Antioxid. Redox Signal. 40, 433-452.


Subject(s)
Mitochondrial Diseases , Non-alcoholic Fatty Liver Disease , Selenium , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Fish Oils/pharmacology , Fish Oils/metabolism , Selenium/pharmacology , Selenium/metabolism , PPAR alpha/genetics , Oxidoreductases/metabolism , Oxidative Stress , Mitochondrial Diseases/metabolism
2.
Chemosphere ; 345: 140247, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37742764

ABSTRACT

Sulfamethoxazole (SMZ) and zinc (Zn) are widespread harmful materials in aquatic ecosystems and cause toxic effects to aquatic animals under their individual exposure. Although they often co-exist in aquatic environments, little is known about their joint effects and mechanism influencing aquatic animals. Herein, SMZ induced mitochondrial and lysosomal dysfunction, inhibited autophagy flux, and induced lipotoxicity. However, SMZ-induced changes of these physiological and metabolic processes above were reversed by Zn exposure, indicating the antagonism between Zn and SMZ. SOD1-knockdown abrogated the reversing effects of Zn on mitochondria dysfunction and autophagy flux blockage induced by SMZ, suggesting that SOD1 was essential for Zn to reverse SMZ-induced mitochondria dysfunction and autophagy impairment. Our further investigation found that Zn regulated STAT3 translocation to lysosomes and mitochondria to attenuate SMZ-induced lipotoxicity, and SOD1 was required for these processes. Mechanistically, STAT3 was associated with ATP6V1 A in a coiled-coil domain-dependent manner, and pS710-STAT3-and pY753-STAT3-independent manners. Moreover, SMZ suppressed autophagic degradation of damaged mitochondria via inhibiting interaction between STAT3 and ATP6V1 A and increasing pS710-STAT3 level; SMZ impaired mitochondrial ß-oxidation via decreasing pY753-STAT3 level and STAT3 mitochondrial localization. Zn reversed these SMZ-induced effects to alleviate SMZ-induced lipotoxicity. Taken together, our data showed that SMZ impaired mitochondrial ß-oxidation and lysosomal acidification via the downregulation of SOD1, leading to lipotoxicity, and that Zn reversed SMZ-induced changes of these important biological processes and attenuated SMZ-induced lipotoxicity. Thus, our study identified previously unidentified mechanisms for the antagonistic mechanisms of Zn and SMZ on aquatic animals, which provided novel insights into the environmental risk assessments of the joint exposure between heavy metals and antibiotics in the aquatic organisms.


Subject(s)
Sulfamethoxazole , Zinc , Animals , Zinc/metabolism , Sulfamethoxazole/toxicity , Sulfamethoxazole/metabolism , Ecosystem , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/pharmacology , Acids/metabolism , Lysosomes/metabolism , Fresh Water , Mitochondria/metabolism
3.
Chemosphere ; 340: 139892, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611774

ABSTRACT

Enrofloxacin (ENR) is a kind of widespread hazardous pollutant on aquatic ecosystems and causes toxic effects, such as disorders of metabolism, on aquatic animals. However, its potential mechanisms at an environmental concentration on metabolic disorders of aquatic organisms remain unclear. Herin, we found that hepatic lipotoxicity was induced by ENR exposure, which led to ENR accumulation, oxidative stress, mitochondrial fragmentation, and fatty acid transfer blockage from lipid droplets into fragmented mitochondria. ENR-induced lipotoxicity and mitochondrial ß-oxidation down-regulation were mediated by reactive oxygen species (ROS). Moreover, dynamin-like protein 1 (DRP1) mediated ENR-induced mitochondrial fragmentation and changes of lipid metabolism. Mechanistically, ENR induced increment of DRP1 mitochondrial localization via dephosphorylating DRP1 at S627 and promoted its interaction with mitochondrial fission factor (MFF), leading to mitochondria fragmentation. For the first time, our study provides an innovative mechanistic link between hepatic lipotoxicity and mitochondrial fragmentation under ENR exposure, and thus identifies previously unknown mechanisms for the direct relationship between environmental ENR concentration and lipotoxicity in aquatic animals. Our study provides innovative insights for toxicological mechanisms and environmental risk assessments of antibiotics in aquatic environment.


Subject(s)
Ecosystem , Environmental Pollutants , Animals , Enrofloxacin , Down-Regulation , Environmental Pollutants/toxicity , Fatty Acids
4.
Environ Sci Technol ; 56(12): 8020-8033, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35653605

ABSTRACT

Exposure to excessive manganese (Mn) is toxic to humans and animals. However, the toxic effects and mechanisms of excessive Mn influencing the vertebrates have been highly overlooked. In the present study, dietary Mn overload significantly increased hepatic lipid and Mn contents, decreased superoxide dismutase 2 (Sod2) activity, increased the Sod2 acetylation level, and induced mitochondrial dysfunction; Mn induced mitochondrial dysfunction through Mtf1/sirtuin 3 (Sirt3)-mediated acetylation of Sod2 at the sites K55 and K70. Meanwhile, mitochondrial oxidative stress was involved in Mn-induced lipotoxicity. Mechanistically, Mn-induced lipotoxicity was via oxidative stress-induced Hsf1 nucleus translocation and its DNA binding capacity to the regions of a peroxisome proliferator-activated receptor g (pparg) promoter, which in turn induced the transcription of lipogenic-related target genes. For the first time, our study demonstrated that Mn-induced hepatic lipotoxicity via a mitochondrial oxidative stress-dependent Hsf1/Pparg pathway and Mtf1/sirt3-mediated Sod2 acetylation participated in mitochondrial dysfunction. Considering that lipid metabolism and lipotoxicity are widely used as the biomarkers for environmental assessments of pollutants, our study provided innovative and important insights into Mn toxicological and environmental evaluation in aquatic environments.


Subject(s)
Sirtuin 3 , Animals , Antioxidants/pharmacology , Fresh Water , Humans , Manganese/toxicity , Mitochondria/metabolism , Oxidative Stress , PPAR gamma/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology
5.
Front Nutr ; 9: 841187, 2022.
Article in English | MEDLINE | ID: mdl-35369063

ABSTRACT

High-phosphorus diet (HPD) reduces lipid deposition and significantly influences lipid metabolism. However, the relevant mechanism is unknown. Herein, using widely-cultured teleost tilapia Oreochromis niloticus as the experimental animals, we found that HPD and Pi incubation reduced triglyceride (TG) content (P ≤ 0.05), suppressed lipogenesis, activated AMP-activated protein kinase (AMPK) pathway and autophagy (P ≤ 0.05), and increased fatty acid ß-oxidation and lipolysis in tilapia liver and hepatocytes (P ≤ 0.05). Our further investigation indicated that Pi treatments activated the lipophagy and facilitated mitochondrial fatty acid ß-oxidation, and according reduced TG deposition (P ≤ 0.05). Mechanistically, phosphorus increased the AMPKα1 phosphorylation level at S496 and Beclin1 phosphorylation at S90, and Beclin1 phosphorylation by AMPKα1 was required for phosphorus-induced lipophagy and lipolysis. Our study revealed a mechanism for Beclin1 regulation and autophagy induction in response to high-phosphorus diet, and provided novel evidences for the link between dietary phosphorus addition and lipolytic metabolism via the AMPK/Beclin1 pathway. Our results also suggested that AMPK should be the potential target for the prevention and control of lipid metabolic disorders. Overall, these results suggested that HPD reduced hepatic lipid deposition by activating AMPK pathway and Beclin1 phosphorylation levels to activate lipophagy, which provided potential targets for the prevention and control of fatty liver in fish.

6.
Antioxid Redox Signal ; 37(7-9): 417-436, 2022 09.
Article in English | MEDLINE | ID: mdl-35293223

ABSTRACT

Aims: Excessive manganese (Mn) exposure is toxic, and induces lipid deposition, but the underlying mechanisms remain elusive. Herein, we explored how dietary Mn supplementation affects lipid deposition and metabolism in the intestine of vertebrates using the yellow catfish Pelteobagrus fulvidraco as the model. Results: High-Mn (H-Mn) diet increased intestinal Mn content, promoted lipid accumulation and lipogenesis, and inhibited lipolysis. In addition, it induced oxidative stress, upregulated metal-response element-binding transcription factor-1 (MTF-1), and peroxisome proliferator-activated receptor gamma (PPARγ) protein expression in the nucleus, induced PPARγ acetylation, and the interaction between PPARγ and retinoid X receptor alpha (RXRα), while it downregulated sirtuin 1 (SIRT1) expression and activity. Mechanistically, Mn activated the MTF-1/divalent metal transporter 1 (DMT1) pathway, increased Mn accumulation in the mitochondria, and induced oxidative stress. This in turn promoted lipid deposition via deacetylation of PPARγ at K339 by SIRT1. Subsequently, PPARγ mediated Mn-induced lipid accumulation through transcriptionally activating fatty acid translocase, stearoyl-CoA desaturase 1, and perilipin 2 promoters. Innovation: These studies uncover a previously unknown mechanism by which Mn induces lipid deposition in the intestine via the oxidative stress-SIRT1-PPARγ pathway. Conclusion: High dietary Mn intake activates MTF-1/DMT1 and oxidative stress pathways. Oxidative stress-mediated PPARγ deacetylation at K339 site contributes to increased lipid accumulation. Our results provided a direct link between Mn and lipid metabolism via the oxidative stress-SIRT1-PPARγ axis. Antioxid. Redox Signal. 37, 417-436.


Subject(s)
Catfishes , Sirtuin 1 , Animals , Catfishes/metabolism , Intestines , Lipid Metabolism , Lipids , Manganese/metabolism , Manganese/pharmacology , Oxidative Stress , PPAR gamma/metabolism , Sirtuin 1/metabolism
7.
Environ Sci Technol ; 56(4): 2407-2420, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35107266

ABSTRACT

Due to many special characteristics, zinc oxide nanoparticles (ZnO NPs) are widely used all over the world, leading to their wide distribution in the environment. However, the toxicities and mechanisms of environmental ZnO NP-induced changes of physiological processes and metabolism remain largely unknown. Here, we found that addition of dietary ZnO NPs disturbed hepatic Zn metabolism, increased hepatic Zn and lipid accumulation, downregulated lipolysis, induced oxidative stress, and activated mitophagy; N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, Zn2+ ions chelator) alleviated high ZnO NP-induced Zn and lipid accumulation, oxidative stress, and mitophagy. Mechanistically, the suppression of mitochondrial oxidative stress attenuated ZnO NP-activated mitophagy and ZnO NP-induced lipotoxicity. Taken together, our study elucidated that mitochondrial oxidative stress mediated ZnO NP-induced mitophagy and lipotoxicity; ZnO NPs could be dissociated to free Zn2+ ions, which partially contributed to ZnO NP-induced changes in oxidative stress, mitophagy, and lipid metabolism. Our study provides novel insights into the impacts and mechanism of ZnO NPs as harmful substances inducing lipotoxicity of aquatic organisms, and accordingly, metabolism-relevant parameters will be useful for the risk assessment of nanoparticle materials in the environment.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Fresh Water , Lipids , Metal Nanoparticles/toxicity , Mitochondria/metabolism , Mitophagy , Nanoparticles/toxicity , Oxidative Stress , Zinc Oxide/toxicity
8.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34769475

ABSTRACT

Nano-sized zinc oxide (nano-ZnO) affects lipid deposition, but its absorption patterns and mechanisms affecting lipid metabolism are still unclear. This study was undertaken to investigate the molecular mechanism of nano-ZnO absorption and its effects on lipid metabolism in the intestinal tissues of a widely distributed freshwater teleost yellow catfish Pelteobagrus fulvidraco. We found that 100 mg/kg dietary nano-ZnO (H-Zn group) significantly increased intestinal Zn contents. The zip6 and zip10 mRNA expression levels were higher in the H-Zn group than those in the control (0 mg/kg nano-ZnO), and zip4 mRNA abundances were higher in the control than those in the L-Zn (50 mg/kg nano-ZnO) and H-Zn groups. Eps15, dynamin1, dynamin2, caveolin1, and caveolin2 mRNA expression levels tended to reduce with dietary nano-ZnO addition. Dietary nano-ZnO increased triglyceride (TG) content and the activities of the lipogenic enzymes glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and isocitrate dehydrogenase (ICDH), upregulated the mRNA abundances of lipogenic genes 6pgd, fatty acid synthase (fas), and sterol regulatory element binding protein 1 (srebp1), and reduced the mRNA expression of farnesoid X receptor (fxr) and small heterodimer partner (shp). The SHP protein level in the H-Zn group was lower than that in the control and the L-Zn group markedly. Our in vitro study indicated that the intestinal epithelial cells (IECs) absorbed nano-ZnO via endocytosis, and nano-Zn-induced TG deposition and lipogenesis were partially attributable to the endocytosis of nano-ZnO in IECs. Mechanistically, nano-ZnO-induced TG deposition was closely related to the metal responsive transcription factor 1 (MTF-1)-SHP pathway. Thus, for the first time, we found that the lipogenesis effects of nano-ZnO probably depended on the key gene shp, which is potentially regulated by MTF1 and/or FXR. This novel signaling pathway of MTF-1 through SHP may be relevant to explain the toxic effects and lipotoxicity ascribed to dietary nano-ZnO addition.


Subject(s)
Endocytosis/physiology , Intestinal Mucosa , Lipids/toxicity , Lipogenesis/drug effects , Zinc Oxide/pharmacokinetics , Animal Feed/toxicity , Animals , Catfishes , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Diet , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestines/drug effects , Intestines/metabolism , Intestines/pathology , Lipids/pharmacokinetics , Metabolic Networks and Pathways/genetics , Metal Nanoparticles/toxicity , Up-Regulation/drug effects , Zinc/metabolism , Zinc/pharmacokinetics , Zinc Oxide/chemistry , Zinc Oxide/toxicity
9.
Antioxidants (Basel) ; 10(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805536

ABSTRACT

Selenium (Se) is an essential micro-mineral and plays important roles in antioxidant responses, and also influences lipid metabolism and selenoprotein expression in vertebrates, but the effects and mechanism remain unknown. The study was undertaken to decipher the insights into dietary Se influencing lipid metabolism and selenoprotein expression in the anterior and middle intestine (AI and MI) of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (weight: 8.27 ± 0.03 g) were fed a 0.03- (M-Se), 0.25- (A-Se), or 6.39- (E-Se) mg Se/kg diet for 12 wk. AI and MI were analyzed for triglycerides (TGs) and Se concentrations, histochemistry and immunofluorescence, enzyme activities, and gene and protein levelsassociated with antioxidant responses, lipid metabolism, endoplasmic reticulum (ER) stress, and selenoproteome. Compared to the A-Se group, M-Se and E-Se diets significantly decreased weight gain (WG) and increased TGs concentration in the AI and MI. In the AI, compared with A-Se group, M-Se and E-Se diets significantly increased activities of fatty acid synthase, expression of lipogenic genes, and suppressed lipolysis. In the MI, compared to the A-Se group, M-Se and E-Se diets significantly increased activities of lipogenesis and expression of lipogenic genes. Compared with A-Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the AI and MI, and M-Se diet did not significantly reduce GPX activities in the AI and MI. Compared with the A- Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the plasma and liver, and M-Se diet significantly reduced GPX activities in the plasma and liver. Compared with the A-Se group, M-Se and E-Se groups also increased glucose-regulated protein 78 (GRP78, ER stress marker) protein expression of the intestine. Dietary Se supplementation also differentially influenced the expression of the 28 selenoproteins in the AI and MI, many of which possessed antioxidant characteristics. Compared with the A-Se group, the M-Se group significantly decreased mRNA levels of txnrd2 and txnrd3, but made no difference on mRNA levels of these seven GPX proteins in the MI. Moreover, we characterized sterol regulatory element binding protein 1c (SREBP1c) binding sites of three ER-resident proteins (selenom, selenon, and selenos) promoters, and found that Se positively controlled selenom, selenon, and selenos expression via SREBP1c binding to the selenom, selenon, and selenos promoter. Thus, dietary marginal and excess Se increased TGs deposition of yellow catfish P. fulvidraco, which might be mediated by ER-resident selenoproteins expression and ER stress.

10.
Environ Sci Technol ; 55(8): 4943-4953, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33739816

ABSTRACT

In this study, the mechanisms of environmentally relevant doses of Cu and Zn mixtures influencing lipid deposition and metabolism were investigated in freshwater teleost yellow catfish Pelteobagrus fulvidraco (2 months old, 4.95 (t0.01 g, mean ± SEM). Our study indicated that waterborne Cu exposure increased lipid content, while Zn activated lipophagic flux and alleviated Cu-induced lipid accumulation. Yellow catfish hepatocytes treated with Zn or Zn + Cu activated autophagy-specific lipophagy, decreased lipid storage, and increased nonesterified fatty acid (NEFA) release, suggesting a causal relationship between lipophagy and lipid droplet (LD) breakdown under Zn and Zn + Cu conditions. Our further investigation found that Beclin1 deacetylation by sirtuin 1 (SIRT1) was required for Zn- and Zn + Cu-induced lipophagy and lipolysis, and lysine residues 427 and 434 were key sites for Beclin1 deacetylation. Taken together, these findings show that the Zn-induced deacetylation of Beclin1 promotes lipophagy as an important pathway to alleviate Cu-induced lipid accumulation in fish, which reveals a previously unidentified mechanism for understanding the antagonistic effects of Cu and Zn on metabolism at their environmentally relevant concentrations. Our results highlight the importance of combined exposure when the biological effects of heavy metals are evaluated during environmental risk assessments.


Subject(s)
Beclin-1/metabolism , Catfishes , Copper/toxicity , Lipid Metabolism , Zinc/metabolism , Animals , Autophagy , Liver/metabolism
11.
Int J Mol Sci ; 22(1)2020 Dec 27.
Article in English | MEDLINE | ID: mdl-33375507

ABSTRACT

The present study was performed to clone and characterize the structures and functions of steroidogenic factor 1 (sf-1) and 17α-hydroxylase/lyase (cyp17α) promoters in yellow catfish Pelteobagrus fulvidraco, a widely distributed freshwater teleost. We successfully obtained 1981 and 2034 bp sequences of sf-1 and cyp17α promoters, and predicted the putative binding sites of several transcription factors, such as Peroxisome proliferator-activated receptor alpha (PPARα), Peroxisome proliferator-activated receptor gamma (PPARγ) and Signal transducer and activator of transcription 3 (STAT3), on sf-1 and cyp17α promoter regions, respectively. Overexpression of PPARγ significantly increased the activities of sf-1 and cyp17α promoters, but overexpression of PPARα significantly decreased the promoter activities of sf-1 and cyp17α. Overexpression of STAT3 reduced the activity of the sf-1 promoter but increased the activity of the cyp17α promoter. The analysis of site-mutation and electrophoretic mobility shift assay suggested that the sf-1 promoter possessed the STAT3 binding site, but did not the PPARα or PPARγ binding sites. In contrast, only the PPARγ site, not PPARα or STAT3 sites, was functional with the cyp17α promoter. Leptin significantly increased sf-1 promoter activity, but the mutation of STAT3 and PPARγ sites decreased leptin-induced activation of sf-1 promoter. Our findings offered the novel insights into the transcriptional regulation of sf-1 and cyp17α and suggested leptin regulated sf-1 promoter activity through STAT3 site in yellow catfish.


Subject(s)
Catfishes/genetics , Gene Expression Regulation/genetics , Promoter Regions, Genetic , Steroid 17-alpha-Hydroxylase/genetics , Steroidogenic Factor 1/genetics , Animals , Binding Sites , Catfishes/metabolism , Cloning, Molecular , Genes, Reporter , HEK293 Cells , Humans , Leptin/metabolism , Luciferases/metabolism , Mutation , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Protein Binding , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Steroid 17-alpha-Hydroxylase/metabolism , Steroidogenic Factor 1/metabolism , Up-Regulation
12.
Int J Mol Sci ; 21(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153158

ABSTRACT

It is important to explore the regulatory mechanism of phosphorus homeostasis in fish, which help avoid the risk of P toxicity and prevent P pollution in aquatic environment. The present study obtained the full-length cDNA sequences and the promoters of three SLC20 members (slc20a1a, slc20a1b and slc20a2) from grass carp Ctenopharyngodon idella, and explored their responses to inorganic phosphorus (Pi). Grass carp SLC20s proteins possessed conservative domains and amino acid sites relevant with phosphorus transport. The mRNAs of three slc20s appeared in the nine tissues, but their expression levels were tissue-dependent. The binding sites of three transcription factors (SREBP1, NRF2 and VDR) were predicted on the slc20s promoters. The mutation and EMSA analysis indicated that: (1) SREBP1 binding site (-783/-771 bp) negatively but VDR (-260/-253 bp) binding site positively regulated the activities of slc20a1a promoter; (2) SREBP1 (-1187/-1178 bp), NRF2 (-572/-561 bp) and VDR(615/-609 bp) binding sites positively regulated the activities of slc20a1b promoter; (3) SREBP1 (-987/-977 bp), NRF2 (-1469/-1459 bp) and VDR (-1124/-1117 bp) binding sites positively regulated the activities of the slc20a2 promoter. Moreover, Pi incubation significantly reduced the activities of three slc20s promoters, and Pi-induced transcriptional inactivation of slc20s promoters abolished after the mutation of the VDR element but not SREBP1 and NRF2 elements. Pi incubation down-regulated the mRNA levels of three slc20s. For the first time, our study elucidated the transcriptional regulatory mechanisms of SLC20s and their responses to Pi, which offered new insights into the Pi homeostatic regulation and provided the basis for reducing phosphorus discharge into the waters.


Subject(s)
Carps/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Sodium-Phosphate Cotransporter Proteins/genetics , Animals , Carps/metabolism , Cloning, Molecular , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Homeostasis/genetics , Metabolic Networks and Pathways/genetics , Phosphorus/metabolism , Phosphorus/pharmacology , Promoter Regions, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , Response Elements/genetics , Sequence Analysis, DNA , Sodium-Phosphate Cotransporter Proteins/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism
13.
Int J Mol Sci ; 21(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858813

ABSTRACT

ZIP (zinc-regulated transporters, iron-regulated transporter-like protein) family plays an important role in organism Zn balance. This research identified the promoter regions of ZIP3 and ZIP8, two members of ZIP family, from a freshwater teleost yellow catfish Pelteobagrus fulvidraco, characterized the binding sequences of the metal-responsive transcription factor-1 (MTF-1) and Ras responsive element binding protein 1 (RREB1) on their promoter regions. The present study cloned and obtained the 2027 bp of ZIP3 promoter and 1664 bp of ZIP8 promoter, and predicted several key elements on their promoters, such as the binding sites of CREB (cAMP-response element binding protein), KLF4 (Kruppel like factor 4), MTF-1 and RREB1. The sequence deletion from -361 bp to -895 bp down-regulated the luciferase activity of ZIP3 promoter, and the deletion from -897 bp to -1664 bp down-regulated the luciferase activity of ZIP8 promoter. Within different deletion plasmids, the relative luciferase activities of ZIP3 and ZIP8 promoters changes to Zn incubation in a Zn concentration-dependent manner. The site mutagenesis and EMSA (electrophoretic mobility shift assay) found that the -1327 bp/-1343 bp MTF-1 binding site and the -248 bp/-267 bp RREB1 binding site on the ZIP3 promoter, and the -1543 bp/-1557 bp MTF-1 binding site on the ZIP8 promoter are functional sites. Low Zn increased the binding capability between MTF-1 and its responsive site on the ZIP3 promoter, and high Zn increased the transcriptional activation ZIP3 by RREB1; Zn also promoted the binding ability between MTF-1 and its responsive element on the ZIP8 promoter. This study provides the first direct evidence for the response elements of MTF-1 and RREB1 on ZIP3 and MTF-1 on ZIP8 to Zn, which are very important for the evaluation of Zn nutrition and toxicity in vertebrates.


Subject(s)
Catfishes/genetics , Cation Transport Proteins/genetics , Transcription Factors/metabolism , Zinc/metabolism , Animals , Catfishes/metabolism , Cation Transport Proteins/chemistry , Cloning, Molecular , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation , Promoter Regions, Genetic , Sequence Deletion
14.
Chemosphere ; 246: 125792, 2020 May.
Article in English | MEDLINE | ID: mdl-31918101

ABSTRACT

Metal-responsive transcription factor-1 (MTF-1) and metallothionein (MT) expression are involved in metal homeostasis and detoxification. Here, we characterized the structure and functions of mtf-1 and mt promoters in yellow catfish Pelteobagrus fulvidraco. Many important binding sites of transcriptional factors, such as heat shock promoter element (HSE) and metal responsive element (MRE), were predicted on their promoter regions. Cu did not significantly influence the activity of mtf-1 promoter, but Zn increased its promoter activity. Cu and Zn induced the increase of mt promoter activity. HSE site of mtf-1 promoter was the functional binding locus responsible for Zn-induced mtf-1 transcriptional activation. Zn and Cu induced transcriptional activation of mt gene through the MTF-1- and MRE-dependent pathway. Using primary hepatocytes of yellow catfish, we found that Cu and Zn induced the mt expression; Cu did not significantly influence the mRNA and total protein levels of MTF-1, but Zn up-regulated its mRNA and total protein expression. Both Zn and Cu treatment also up-regulated MTF-1 nuclear protein expression, which in turn increased the mt expression. Taken together, these findings delineated the transcriptional regulation of MT and MTF-1 under Zn or Cu treatments, and provided some mechanisms for the regulation of Cu and Zn homeostasis in vertebrates.


Subject(s)
Copper/toxicity , Metallothionein/metabolism , Water Pollutants, Chemical/metabolism , Zinc/toxicity , Animals , Binding Sites , Catfishes/metabolism , Cell Nucleus/metabolism , Copper/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Metallothionein/genetics , Metals/metabolism , Promoter Regions, Genetic , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Up-Regulation , Zinc/metabolism , Transcription Factor MTF-1
15.
J Trace Elem Med Biol ; 59: 126433, 2020 May.
Article in English | MEDLINE | ID: mdl-31735605

ABSTRACT

BACKGROUND: Zn is an essential trace element for vertebrates, and Zn uptake and transport is related with the ZIP family of Zn transporters. Meantime, Zn also influenced the expression of ZIP family members. METHODS: We cloned and characterized the full-length cDNA sequences of ten Zn transport-relevant genes (ZIP1, ZIP3, ZIP6, ZIP7, ZIP8, ZIP9, ZIP10, ZIP11, ZIP13 and ZIP14) from yellow catfish Pelteobagrus fulvidraco, investigated their mRNA tissue expression. These ZIP mRNA expression was also assessed in the primary hepatocytes and intestinal epithelial cells of yellow catfish in response to three Zn levels (0, 30 µM and 60 µM, respectively). RESULTS: All these genes shared the similar domains with the corresponding members in mammals. The mRNA expression of the ten ZIP genes was detected in nine-tested tissues, but variable among these tissues. Flow cytometry analysis and confocal microscopy observation indicated that intracellular free Zn2+ concentration in hepatocytes and intestinal epithelial cells increased with increasing Zn incubation concentration at both 24 h and 48 h. Zn incubation differentially influenced mRNA levels of ZIP transporters in the hepatocytes and intestinal epithelial cells, in a time- and cells-dependent manners. In the hepatocytes, at 24 h, compared to the control, Zn addition down-regulated mRNA levels of ZIP1, ZIP3, ZIP6, ZIP7, ZIP8, ZIP9, ZIP11 and ZIP14; however, ZIP10 mRNA levels were lower in 60 µM Zn group than those in the control and 30 µM Zn group. At 48 h, mRNA levels of ZIP1, ZIP6, ZIP7, ZIP9, ZIP10 and ZIP14 declined with increasing Zn incubation concentrations; ZIP3 mRNA levels were the lowest in 60 µM Zn group and showed no significant differences between the control and 30 µM Zn group. In the intestinal epithelial cells, at 24 h, Zn addition down-regulated mRNA levels of ZIP1, ZIP6, ZIP7, ZIP8, ZIP9, ZIP10, ZIP11, ZIP13 and ZIP14; ZIP3 mRNA levels were lower in 60 µM Zn group than those in the control and 30 µM Zn group. At 48 h, Zn addition up-regulated mRNA levels of ZIP6 and ZIP9, but down-regulated mRNA levels of ZIP8, ZIP10 and ZIP13. ZIP7, ZIP11 and ZIP14 mRNA abundances were the lowest in 60 µM Zn group and showed no significant differences between the control and 30 µM Zn group. CONCLUSION: For the first time, our study characterized ten ZIP family members in yellow catfish, explored their mRNA tissue expression. Their regulation to Zn addition were also investigated in the hepatocytes and intestinal epithelial cells of yellow catfish. Our study revealed the mechanism of cells exposed to Zn addition and provided novel insights for the regulatory mechanism of Zn homeostasis.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Catfishes/genetics , Zinc/metabolism , Animals , Cells, Cultured , Fresh Water/chemistry , Hepatocytes/chemistry , Hepatocytes/metabolism , Intestinal Mucosa/chemistry , Intestinal Mucosa/metabolism , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zinc/analysis
16.
Gen Comp Endocrinol ; 259: 12-19, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29106969

ABSTRACT

Luteinizing hormone (LH) plays important roles in regulating steroidogenesis and reproductive development of vertebrates. In the present paper, we study function of LH on early ovarian development of orange-spotted grouper by electrotransfer of single-chain LH gene into skeletal muscle for the first time. Short-term and long-term injection experiments were performed in this work, respectively. For short-term injection experiments, fish received one electrotransfer with the plasmid in skeletal muscle, then blood and muscle around the injected area were sampled 1, 3, 5 and 7 days after the injection, mRNA expression levels of LH gene relative to 18S were determined by quantitative real-time PCR (RT-PCR) assays and serum 17ß-estradiol (E2) levels were quantified by ELISA method. The results showed that levels of mRNA of LH gene in muscle and serum E2 level increased from 1 day to 7 days after the injection. For long-term injection experiments, fish received electrotransfer with the plasmid 4 times at weekly intervals in skeletal muscle. 48 h after the last injection, blood, gonad and hypothalamus samples were collected. Transcripts of cyp19a1a, cyp19a1b and gnrh1 genes and levels of serum E2 were separately analyzed by RT-PCR assays and ELISA method, and ovarian tissues were made of paraffin sections and stained by hematoxylin-eosin by method and observed by optical microscopy. The results suggested that long-term injection of LH gene into muscle upregulated transcripts of cyp19a1a and cyp19a1b and downregulated that of gnrh1, and stimulated E2 production and early-stage oogenesis. Moreover, statistical data showed that 9 of 10 ovaries of injected fish with LH gene began to develop after the long-term experiments. These data suggest that single-chain LH gene introduced into skeletal muscle via electrotransfer can be expressed and induce the early ovarian development of juvenile orange-spotted grouper. This work contributes to solve reproductive dysfunctions associated with low hormone levels of teleosts, further it may represent the demonstration at regulation of LH on early ovarian development of orange-spotted grouper to a certain extent.


Subject(s)
Bass/metabolism , Electroporation/methods , Luteinizing Hormone/genetics , Muscle, Skeletal/metabolism , Ovary/embryology , Ovary/metabolism , Animals , Bass/genetics , Biological Assay , Cloning, Molecular , Estradiol/metabolism , Female , Gene Expression Regulation, Developmental , Injections , Luteinizing Hormone/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sex Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL
...