Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(7): e0288507, 2023.
Article in English | MEDLINE | ID: mdl-37490500

ABSTRACT

This study was designed to explore whether aquaporin 1(AQP1), P53 and P21 can be used as diagnostic biomarkers of lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and potential indicators of sepsis-induced multiple organ injury. Bioinformatics results demonstrated that AQP1, P53, P21 was dramatically elevated 6h after Cecal ligation and puncture (CLP)-AKI in rat renal tissue. The expression of AQP1, P53, P21, NGAL and KIM-1 in kidney were increased significantly at first and then decreased gradually in LPS-induced AKI rats. Histopathological sections showed swelling of tubular epithelial cells and destruction of basic structures as well as infiltration of numerous inflammatory cells in LPS-induced AKI. Moreover, the expressions of AQP1, P53 and P21 in heart were significantly increased in LPS treatment rats, while the AQP1 expressions in lung and small intestine were significantly decreased. The level of NGAL mRNA in heart, lung and small intestine was firstly increased and then decreased during LPS treatment rats, but the expression of KIM-1 mRNA was not affected. Therefore, our results suggest that AQP1, P53 and P21 is remarkably upregulated in LPS-induced AKI, which may be considered as a potential novel diagnostic biomarker of Septic AKI. NGAL may serve as a biomarker of sepsis-induced multiple organ damage during the process of LPS-induced AKI.


Subject(s)
Acute Kidney Injury , Sepsis , Rats , Animals , Endotoxins , Lipopolysaccharides/adverse effects , Tumor Suppressor Protein p53/genetics , Lipocalin-2 , Aquaporin 1/genetics , Acute Kidney Injury/pathology , Kidney/pathology , Lung/pathology , Sepsis/pathology , Biomarkers/metabolism , Intestine, Small/metabolism
2.
DNA Cell Biol ; 42(8): 456-480, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37379471

ABSTRACT

This study was designed to investigate the role of aquaporin 1 (AQP1) in ferroptosis, macrophage polarization, mitochondrial dysfunction, and impaired autophagy of lipopolysaccharide (LPS)-stimulated RAW264.7 cells and explored the underlying mechanisms. Si-AQP1-mediated AQP1 silencing RAW264.7 cells was constructed. Si-P53-mediated P53 silencing or pcDNA-P53 overexpression RAW264.7 cells was constructed. Assays of ATP, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Mitochondrial membrane potential (JC-1) staining were performed to evaluate mitochondrial biological function. Assays of flow cytometry, reactive oxygen species (ROS) staining, western blot (WB), RT-qPCR, malondialdehyde (MDA), glutathione (GSH), and total superoxide dismutase (SOD) were performed to detect cell ferroptosis, macrophage polarization, and impaired autophagy. The involvement of the P53 pathway was revealed by WB. The results showed that LPS (30 µg/mL) could induce ferroptosis, M1 polarization, mitochondrial dysfunction, and autophagy damage in RAW264.7 cells. Meanwhile, the expression of AQP1 was increased and the expression of P53 was decreased. In addition, Pifithrin-α (PIF; 15 µM), a P53 inhibitor, significantly aggravated ferroptosis, M1 polarization, mitochondrial dysfunction, and autophagy damage as well as up-regulation of AQP1 protein expression in LPS-induced RAW264.7 cells. Interestingly, this phenomenon was markedly alleviated by Kevetrin hydrochloride (70 µM), a P53 agonist. Mechanistically, silencing AQP1 significantly alleviated ferroptosis, M1 polarization, mitochondrial dysfunction, and autophagy damage by up-regulating the expression of P53 in LPS-stimulated RAW264.7 cells. Indeed, inhibition of P53 expression by PIF treatment dramatically reversed this effect on the basis of LPS+si-AQP1. Therefore, we concluded for the first time that AQP1 can promote ferroptosis, M1 polarization, mitochondrial dysfunction, and autophagy impairment by inhibiting the expression of P53 in LPS-stimulated RAW264.7 cells, and AQP1 or P53 may be considered as a crucial determiner that can regulate the biological behavior of RAW264.7 cells stimulated by LPS.


Subject(s)
Ferroptosis , Lipopolysaccharides , Aquaporin 1/genetics , Autophagy , Down-Regulation , Lipopolysaccharides/pharmacology , Macrophages , Mitochondria , Signal Transduction , Tumor Suppressor Protein p53/genetics , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...