Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 919: 170826, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340840

ABSTRACT

The patterns and mechanisms by which soil bacterial and fungal community ß-diversity respond to vegetation degradation in saline-alkaline soils are currently not clear, and in particular, the role of biotic interactions is relatively unknown. To investigate the assembly of bacterial and fungal communities in topsoil (0-10 cm) in saline-alkaline soils at different stages of vegetation degradation, the ß-Mean Nearest Classification Unit Distance, the ß-Nearest Taxon Index, and the Raup-Crick index were calculated. The relative importance of biotic and environmental factors in controlling ß diversity under deterministic processes was also quantified by using relative importance analyses. The ß diversity of soil bacterial and fungal communities responded differently in different stages of vegetation degradation in saline-alkaline soils, with bacterial ß diversity increasing with increasing vegetation degradation but fungal ß diversity showing few differences. Deterministic processes regulated soil bacterial community assembly, and biotic factors were important in driving changes in ß diversity, whereas both deterministic and stochastic processes were essential in soil fungal community assembly, and environmental factors were important in affecting fungal ß diversity. Furthermore, fungal ß diversity is far more affected by interactions between fungus and bacteria than bacteria. Our study demonstrates the different effects of vegetation degradation on bacterial and fungal communities in saline soils to provide the overall implications for saline soils microorganisms in deteriorating ecosystems.


Subject(s)
Ecosystem , Mycobiome , Soil , Soil Microbiology , Bacteria
2.
Microorganisms ; 9(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498486

ABSTRACT

In this study, we analyzed microbial community composition and the functional capacities of degraded sites and restored/natural sites in two typical wetlands of Northeast China-the Phragmites marsh and the Carex marsh, respectively. The degradation of these wetlands, caused by grazing or land drainage for irrigation, alters microbial community components and functional structures, in addition to changing the aboveground vegetation and soil geochemical properties. Bacterial and fungal diversity at the degraded sites were significantly lower than those at restored/natural sites, indicating that soil microbial groups were sensitive to disturbances in wetland ecosystems. Further, a combined analysis using high-throughput sequencing and GeoChip arrays showed that the abundance of carbon fixation and degradation, and ~95% genes involved in nitrogen cycling were increased in abundance at grazed Phragmites sites, likely due to the stimulating impact of urine and dung deposition. In contrast, the abundance of genes involved in methane cycling was significantly increased in restored wetlands. Particularly, we found that microbial composition and activity gradually shifts according to the hierarchical marsh sites. Altogether, this study demonstrated that microbial communities as a whole could respond to wetland changes and revealed the functional potential of microbes in regulating biogeochemical cycles.

3.
Sci Rep ; 5: 11316, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26076653

ABSTRACT

Studying the peatlands accumulation and carbon (C) storage in monsoonal areas could provide useful insights into the response of C dynamics to climate variation in the geological past. Here, we integrated 40 well-dated peat/lake sediment cores to reveal the peatlands evolution history in the Sanjiang Plain and examine its links to East Asian monsoon variations during the Holocene. The results show that 80% peatlands in the Sanjiang Plain initiated after 4.7 ka (1 ka = 1000 cal yr BP), with the largest initiating frequency around 4.5 ka. The mean C accumulation rate of peatlands in the Sanjiang Plain exhibits a synchronous increase with the peatlands expansion during the Holocene. Such a peatlands expanding and C accumulating pattern corresponds well to the remarkable drying event subsequent to the Holocene monsoon maximum. We suggest that in addition to the locally topographic conditions, Holocene variations of East Asian summer monsoon (especially its associated precipitation) have played a critical role in driving the peatlands initiation and expansion in the Sanjiang Plain.

4.
ScientificWorldJournal ; 2014: 209547, 2014.
Article in English | MEDLINE | ID: mdl-25114956

ABSTRACT

Hydrology helps determine the character of wetlands; wetlands, in turn, regulate water flow, which influences regional hydrology. To understand these dynamics, we studied the Naoli basin where, from 1954 to 2005, intensive marshland cultivation took place, and the watershed's wetland area declined from 94.4 × 10(4)ha to 17.8 × 10(4)ha. More than 80% of the wetland area loss was due to conversion to farmland, especially from 1976 to 1986. The processes of transforming wetlands to cultivated land in the whole Naoli basin and subbasins can be described using a first order exponential decay model. To quantify the effects of wetlands cultivation, we analyzed daily rainfall and streamflow data measured from 1955 to 2005 at two stations (Baoqing Station and Caizuizi Station). We defined a streamflow regulation index (SRI) and applied a Mann-Kendall-Sneyers test to further analyze the data. As the wetland area decreased, the peak streamflow at the Caizuizi station increased, and less precipitation generated heavier peak flows, as the runoff was faster than before. The SRI from 1959 to 2005 showed an increasing trend; the SRI rate of increase was 0.05/10a, demonstrating that the watershed's regulation of streamflow regulation was declined as the wetlands disappeared.


Subject(s)
Hydrology , Rivers , Wetlands , Geography , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...