Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 42(12): 3326-3339, 2019 12.
Article in English | MEDLINE | ID: mdl-31329293

ABSTRACT

Plant glutamate receptor-like (GLR) genes play important roles in plant development and immune response. However, the functions of GLRs in abiotic stress response remain unclear. Here we show that cold acclimation at 12°C induced the transcripts of GLR3.3 and GLR3.5 with increased tolerance against a subsequent chilling at 4 °C. Silencing of GLR3.3 or/and GLR3.5 or application of the antagonist of ionotropic glutamate receptor 6,7-dinitroquinoxaline-2,3-dione (DNQX), all compromised the acclimation-induced increases in the transcripts of respiratory burst oxidase homolog1 (RBOH1), activity of NADPH oxidase, the accumulation of apoplastic H2 O2 and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), resulting in an attenuated chilling tolerance; the effect, however, was rescued by foliar application of H2 O2 or GSH. Both RBOH1-silenced and glutathione biosynthesis genes, γ- glutamylcysteine synthetase (GSH1)- and glutathione synthetase (GSH2)-cosilenced plants had decreased chilling tolerance with reduced GSH/GSSG ratio. Moreover, application of DNQX had little effects on the GSH/GSSG ratio and the tolerance in RBOH1-silenced plants and GSH1- and GSH2-cosilenced plants. These findings unmasked the functional hierarchy of GLR-H2 O2 -glutathione cascade and shed new light on cold response pathway in tomato plants.


Subject(s)
Acclimatization/physiology , Cold Temperature , Homeostasis , Hydrogen Peroxide/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/physiology , Acclimatization/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Silencing/drug effects , Glutamic Acid/pharmacology , Glutathione/metabolism , Homeostasis/drug effects , Solanum lycopersicum/drug effects , Solanum lycopersicum/genetics , Oxidation-Reduction/drug effects , Plant Proteins/genetics , Quinoxalines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects
2.
J Exp Bot ; 69(16): 4127-4139, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29868714

ABSTRACT

Cold acclimation-induced cold tolerance is associated with the generation of reactive oxygen species (ROS), nitric oxide (NO), and mitogen-activated protein kinases (MPKs) in plants. Here, we hypothesized that calcium-dependent protein kinases (CPKs) induce a crosstalk among ROS, NO, and MPKs, leading to the activation of abscisic acid (ABA) signaling in plant adaptation to cold stress. Results showed that cold acclimation significantly increased the transcript levels of CPK27 along with the biosynthesis of ABA in tomato (Solanum lycopersicum). Silencing of CPK27 compromised acclimation-induced cold tolerance, generation of hydrogen peroxide (H2O2) in the apoplast, NO and ABA accumulation, and the activation of MPK1/2. Crosstalk among H2O2, NO, and MPK1/2 contributes to the homeostasis of H2O2 and NO, activation of MPK1/2, and cold tolerance. ABA is also critical for CPK27-induced cold tolerance, generation of H2O2 and NO, and the activation of MPK1/2. These results strongly suggest that CPK27 may function as a positive regulator of ABA generation by activating the production of ROS and NO as well as MPK1/2 in cold adaptation.


Subject(s)
Abscisic Acid/metabolism , Acclimatization/physiology , Cold Temperature , Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Protein Kinases/metabolism , Solanum lycopersicum/physiology
3.
Plant Cell Physiol ; 58(11): 1963-1975, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29036450

ABSTRACT

The participation of nitric oxide (NO) in the responses of plants towards biotic and abiotic stresses is well established. However, the mechanism involved particularly in cold acclimation-induced chilling tolerance remains elusive. Here we show the cold acclimation induced-chilling tolerance was associated with inductions of nitrate reductase (NR)-dependent NO production, S-nitrosylated glutathione reductase (GSNOR) activity and mitogen-activated protein kinases MPK1/2 activation in tomato plants. Silencing of NR resulted in decreased GSNOR activity and MPK1/2 activation, which subsequently compromised cold acclimation-induced chilling tolerance. By contrast, silencing of GSNOR caused decreased NR activity, increased NO accumulation and MPK1/2 activation, and enhanced cold acclimation-induced chilling tolerance. Furthermore, co-silencing of MPK1 and MPK2 attenuated the NR-dependent NO production and cold acclimation-induced tolerance to chilling. Results from present study suggest the importance of MPK1/2 for the induction of NR-dependent NO generation, while the accumulation of nitrosylated glutathione from NO-derived reactive nitrogen species could potentially S-nitrosylate NR. These findings provide new insight into the crosstalk of NO and MPK1/2 in cold acclimation-induced chilling tolerance in tomato plants.


Subject(s)
Acclimatization/physiology , Mitogen-Activated Protein Kinases/metabolism , Nitric Oxide/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/physiology , Aldehyde Oxidoreductases/metabolism , Cold Temperature , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Mitogen-Activated Protein Kinases/genetics , Nitrate Reductase/metabolism , Reactive Nitrogen Species/metabolism
4.
Front Plant Sci ; 7: 469, 2016.
Article in English | MEDLINE | ID: mdl-27092168

ABSTRACT

Calcium-dependent protein kinases (CDPKs) play critical roles in regulating growth, development and stress response in plants. Information about CDPKs in tomato, however, remains obscure although it is one of the most important model crops in the world. In this study, we performed a bioinformatics analysis of the entire tomato genome and identified 29 CDPK genes. These CDPK genes are found to be located in 12 chromosomes, and could be divided into four groups. Analysis of the gene structure and splicing site reflected high structure conservation within different CDPK gene groups both in the exon-intron pattern and mRNA splicing. Transcripts of most CDPK genes varied with plant organs and developmental stages and their transcripts could be differentially induced by abscisic acid (ABA), brassinosteroids (BRs), methyl jasmonate (MeJA), and salicylic acid (SA), as well as after exposure to heat, cold, and drought, respectively. To our knowledge, this is the first report about the genome-wide analysis of the CDPK gene family in tomato, and the findings obtained offer a clue to the elaborated regulatory role of CDPKs in plant growth, development and stress response in tomato.

5.
Sci Rep ; 6: 20212, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26832070

ABSTRACT

Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas.


Subject(s)
Abscisic Acid/biosynthesis , Adaptation, Biological , Cucumis sativus , Droughts , Luffa , Acculturation , Dehydration , Gene Expression Regulation, Plant , Plant Leaves , Plant Roots , Plant Transpiration , Signal Transduction , Water , Xylem
SELECTION OF CITATIONS
SEARCH DETAIL
...