Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Chem Biodivers ; 21(5): e202400027, 2024 May.
Article in English | MEDLINE | ID: mdl-38602839

ABSTRACT

Garlic oil has a wide range of biological activities, and its broad-spectrum activity against phytopathogenic fungi still has the potential to be explored. In this study, enzymatic treatment of garlic resulted in an increase of approximately 50 % in the yield of essential oil, a feasible GC-MS analytical program for garlic oil was provided. Vacuum fractionation of the volatile oil and determination of its inhibitory activity against 10 fungi demonstrated that garlic oil has good antifungal activity. The antifungal activity levels were ranked as diallyl trisulfide (S-3)>diallyl disulfide (S-2)>diallyl monosulfide (S-1), with an EC50 value of S-3 against Botrytis cinerea reached 8.16 mg/L. Following the structural modification of compound S-3, a series of derivatives, including compounds S-4~7, were synthesized and screened for their antifungal activity. The findings unequivocally demonstrated that the compound dimethyl trisulfide (S-4) exhibited exceptional antifungal activity. The EC50 of S-4 against Sclerotinia sclerotiorum reached 6.83 mg/L. SEM, In vivo experiments, and changes in mycelial nucleic acids, soluble proteins and soluble sugar leakage further confirmed its antifungal activity. The study indicated that the trisulfide bond structure was the key to good antifungal activity, which can be developed into a new type of green plant-derived fungicide for plant protection.


Subject(s)
Allyl Compounds , Antifungal Agents , Garlic , Microbial Sensitivity Tests , Oils, Volatile , Sulfides , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/chemical synthesis , Sulfides/pharmacology , Sulfides/chemistry , Garlic/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Allyl Compounds/pharmacology , Allyl Compounds/chemistry , Allyl Compounds/isolation & purification , Allyl Compounds/chemical synthesis , Distillation , Drug Design , Botrytis/drug effects , Structure-Activity Relationship , Ascomycota/drug effects , Molecular Structure
2.
Bioorg Chem ; 147: 107333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599055

ABSTRACT

To promote the development and exploitation of novel antifungal agents, a series of thiazol-2-ylbenzamide derivatives (3A-3V) and thiazole-2-ylbenzimidoyl chloride derivatives (4A-4V) were designed and selective synthesis. The bioassay results showed that most of the target compounds exhibited excellent in vitro antifungal activities against five plant pathogenic fungi (Valsa mali, Sclerotinia scleotiorum, Botrytis cinerea, Rhizoctonia solani and Trichoderma viride). The antifungal effects of compounds 3B (EC50 = 0.72 mg/L) and 4B (EC50 = 0.65 mg/L) against S. scleotiorum were comparable to succinate dehydrogenase inhibitors (SDHIs) thifluzamide (EC50 = 1.08 mg/L) and boscalid (EC50 = 0.78 mg/L). Especially, compounds 3B (EC50 = 0.87 mg/L) and 4B (EC50 = 1.08 mg/L) showed higher activity against R. solani than boscalid (EC50 = 2.25 mg/L). In vivo experiments in rice leaves revealed that compounds 3B (86.8 %) and 4B (85.3 %) exhibited excellent protective activities against R. solani comparable to thifluzamide (88.5 %). Scanning electron microscopy (SEM) results exhibited that compounds 3B and 4B dramatically disrupted the typical structure and morphology of R. solani mycelium. Molecular docking demonstrated that compounds 3B and 4B had significant interactions with succinate dehydrogenase (SDH). Meanwhile, SDH inhibition assay results further proved their potential as SDHIs. In addition, acute oral toxicity tests on A. mellifera L. showed only low toxicity for compounds 3B and 4B to A. mellifera L. populations. These results suggested that these two series of compounds had merit for further investigation as potential low-risk agricultural SDHI fungicides.


Subject(s)
Antifungal Agents , Benzamides , Drug Design , Microbial Sensitivity Tests , Molecular Docking Simulation , Thiazoles , Structure-Activity Relationship , Benzamides/pharmacology , Benzamides/chemical synthesis , Benzamides/chemistry , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Animals , Ascomycota/drug effects , Rhizoctonia/drug effects , Botrytis
3.
J Agric Food Chem ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922127

ABSTRACT

To promote the development of novel agricultural succinate dehydrogenase inhibitor (SDHI) fungicides, we introduced cinnamamide and nicotinamide structural fragments into the structure of pyrazol-5-yl-amide by carbon chain extension and scaffold hopping, respectively, and synthesized a series of derivatives. The results of the biological activity assays indicated that most of the target compounds exhibited varying degrees of inhibitory activity against the tested fungi. Notably, compounds G22, G28, G34, G38, and G39 exhibited excellent in vitro antifungal activities against Valsa mali with EC50 values of 0.48, 0.86, 0.57, 0.73, and 0.87 mg/L, respectively, and this result was significantly more potent than boscalid (EC50 = 2.80 mg/L) and closer to the specialty control drug tebuconazole (EC50 = 0.30 mg/L). Compounds G22 and G34 also exhibited excellent in vivo protective and curative effects against V. mali at 40 mg/L. The SEM and TEM observations indicated that compounds G22 and G34 may affect normal V. mali mycelial morphology as well as the cellular ultrastructure. Molecular docking analysis results indicated that G22 and boscalid possessed a similar binding mode to that of SDH, and detailed SDH inhibition assays validated the feasibility of the designed compounds as potential SDH inhibitors. Compounds G22 and G3 were selected for theoretical calculations, and the terminal carboxylic acid group of this series of compounds may be a key region influencing the antifungal activity. Furthermore, toxicity tests on Apis mellifera l. revealed that compounds G22 and G34 exhibited low toxicity to A. mellifera l. populations. The above results demonstrated that these series of pyrazole-5-yl-amide derivatives are promising for development as potential low-risk drug-resistance agricultural SDHI fungicides.

4.
J Agric Food Chem ; 71(30): 11365-11372, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37463492

ABSTRACT

Agricultural production is seriously threatened by plant pathogens. The development of new fungicides with high efficacy and low toxicity is urgently needed. In this study, a series of pyrazole carboxamide thiazole derivatives were designed, synthesized, and evaluated for their antifungal activities against nine plant pathogens in vitro. Bioassay results showed that most compounds (3i, 5i, 6i, 7i, 9i, 12i, 16i, 19i, and 23i) exhibited good antifungal activities against Valsa mali. In particular, compounds 6i and 19i exhibited better antifungal activities against Valsa mali with EC50 values of 1.77 and 1.97 mg/L, respectively, than the control drug boscalid (EC50 = 9.19 mg/L). Additionally, compound 23i exhibited excellent inhibitory activity against Rhizoctonia solani, with an EC50 value of 3.79 mg/L. Compound 6i at 40 mg/L showed a satisfactory in vivo protective effect against Valsa mali. Scanning electron microscopy analyses revealed that compound 6i could significantly damage the surface morphology to interfere with the growth of Valsa mali. In molecular docking, the results showed that compound 6i interacts with TRP O: 173, SER P: 39, TYR Q: 58, and ARG P: 43 of succinate dehydrogenase (SDH) through hydrogen bonding and σ-π interaction, and its binding mode is similar to that of boscalid and SDH. The enzyme activity experiment also further verified its action mode. Our studies suggested that pyrazole carboxamide thiazole derivative 6i provided a valuable reference for the further development of succinate dehydrogenase inhibitors.


Subject(s)
Antifungal Agents , Fungicides, Industrial , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Structure-Activity Relationship , Succinate Dehydrogenase , Thiazoles/pharmacology , Molecular Docking Simulation , Fungicides, Industrial/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemistry
5.
J Agric Food Chem ; 70(43): 13839-13848, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36270026

ABSTRACT

A series of pyrazol-5-yl-benzamide derivatives containing the oxazole group were designed and synthesized as potential SDH inhibitors. According to the results of the bioassays, most target compounds displayed moderate-to-excellent in vitro antifungal activities against Valsa mali, Sclerotinia scleotiorum, Alternaria alternata, and Botrytis cinerea. Among them, compounds C13, C14, and C16 exhibited more excellently inhibitory activities against S. sclerotiorum than boscalid (EC50 = 0.96 mg/L), with EC50 values of 0.69, 0.26, and 0.95 mg/L, respectively. In vivo experiments on rape leaves and cucumber leaves showed that compounds C13 and C14 exhibited considerable protective effects against S. sclerotiorum than boscalid. SEM analysis indicated that compounds C13 and C14 significantly destroyed the typical structure and morphology of S. scleotiorum hyphae. In the respiratory inhibition effect assays, compounds C13 (28.0%) and C14 (33.9%) exhibited a strong inhibitory effect on the respiration rate of S. sclerotiorum mycelia, which was close to boscalid (30.6%). The results of molecular docking indicated that compounds C13 and C14 could form strong interactions with the key residues TRP O:173, ARG P:43, TYR Q:58, and MET P:43 of the SDH. Furthermore, the antifungal mechanism of these derivatives was demonstrated by the SDH enzymatic inhibition assay. These results demonstrate that compounds C13 and C14 can be developed into novel SDH inhibitors for crop protection.


Subject(s)
Rhizoctonia , Succinate Dehydrogenase , Succinate Dehydrogenase/metabolism , Antifungal Agents/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Oxazoles/pharmacology , Benzamides/pharmacology
6.
Curr Top Med Chem ; 22(4): 269-283, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-34986774

ABSTRACT

Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, which form an elite class of naturally occurring compounds with promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated a mode of action by forming noncovalent interactions with more than one receptor, further rationally confirming information about structure-activity relationships. This review summarizes recent developments related to coumarin-based hybrids with other pharmacophores aiming at numerous feasible therapeutic enzymatic targets in order to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.


Subject(s)
Antineoplastic Agents , Coumarins , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Coumarins/pharmacology , Coumarins/therapeutic use , Drug Design , Drug Discovery , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
7.
J Agric Food Chem ; 69(38): 11395-11405, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34523907

ABSTRACT

Plant pathogenic fungi seriously threaten agricultural production. There is an urgent need to develop novel fungicides with low toxicity and high efficiency. In this study, we designed and synthesized 44 pyrazolo[3,4-d]pyrimidin-4-one derivatives and evaluated them for their fungicidal activities. The bioassay data revealed that most of the target compounds possessed moderate to high in vitro antifungal activities. Especially compound g22 exhibited remarkable antifungal activity against Sclerotinia sclerotiorum with an EC50 value of 1.25 mg/L, close to that of commercial fungicide boscalid (EC50 = 0.96 mg/L) and fluopyram (EC50 = 1.91 mg/L). Moreover, compound g22 possessed prominent protective activity against S. sclerotiorum in vivo for 24 h (95.23%) and 48 h (93.78%), comparable to positive control boscalid (24 h (96.63%); 48 h (93.23%)). Subsequent studies indicated that compound g22 may impede the growth and reproduction of S. sclerotiorum by affecting the morphology of mycelium, destroying cell membrane integrity, and increasing cell membrane permeability. In addition, the application of compound g22 did not injure the growth or reproduction of Italian bees. This study revealed that compound g22 is expected to be developed for efficient and safe agricultural fungicides.


Subject(s)
Ascomycota , Fungicides, Industrial , Animals , Antifungal Agents/pharmacology , Fungicides, Industrial/pharmacology , Structure-Activity Relationship
8.
J Agric Food Chem ; 69(30): 8358-8365, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34278792

ABSTRACT

Inspired by commercially established fluxapyroxad as the lead compound of novel efficient antifungal ingredients, novel pyrazole carboxylate derivatives containing a flexible thiazole backbone were successfully designed, synthesized, and detected for their in vitro and in vivo biological activities against eight agricultural fungi. The antifungal bioassay results showed that compound 24 revealed excellent bioactivities against Botrytis cinerea and Sclerotinia sclerotiorum, with median effective concentrations (EC50) of 0.40 and 3.54 mg/L, respectively. Compound 15 revealed remarkable antifungal activity against Valsa mali, with an EC50 value of 0.32 mg/L. For in vivo fungicide control against B. cinerea and V. mali, compounds 3 and 24 at 25 mg/L, respectively, displayed prominent efficacy on cherry tomatoes and apple branches. Molecular docking results demonstrated that compound 15 could form an interaction with several crucial residues of succinate dehydrogenase (SDH), and the in vitro enzyme assay indicated that the target compound 15 displayed an inhibitory effect toward SDH, with an IC50 value of 82.26 µM. The experimental results indicated that phenyl pyrazole carboxylate derivatives displayed a weak antifungal property and low activity compared to the other title substituent pyrazole carboxylate derivatives. Compounds 3, 15, and 24 are promising antifungal candidates worthy of further fungicide development due to their prominent effectiveness.


Subject(s)
Fungicides, Industrial , Antifungal Agents/pharmacology , Ascomycota , Botrytis , Fungicides, Industrial/pharmacology , Molecular Docking Simulation , Molecular Structure , Pyrazoles/pharmacology , Structure-Activity Relationship , Thiazoles
9.
Pest Manag Sci ; 77(7): 3529-3537, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33837653

ABSTRACT

BACKGROUND: To promote the discovery and development of new fungicide with novel scaffolds or modes of action, a series of novel 5-(2-chloroethyl)-1-phenyl-6-(pyridin-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one derivatives were synthesized, and evaluated for their antifungal activities. RESULTS: The bioassay data showed that compound 8IIId (EC50  = 1.93 mg L-1 ) is superior to boscalid (EC50  = 6.71 mg L-1 ) against Valsa mali. We introduced chiral groups on the structure of 8IIId, and two chiral configurations were respectively synthesized, which are 8Vc and 8Vd. Surprisingly, 8Vc showed significant antifungal activities against Valsa mali and Physalospora piricola with EC50 values of 0.22 and 0.55 mg L-1 . Physiological and biochemical studies showed that the primary action mechanism of compound 8Vc on Valsa mali may involve changing mycelial morphology and increasing cell membrane permeability. CONCLUSION: These results demonstrated that 8Vc could be further modified as fungicide and provided a valuable reference for antifungal agents with pyrazolo[3,4-d]pyrimidin-4-one skeleton. © 2021 Society of Chemical Industry.


Subject(s)
Ascomycota , Fungicides, Industrial , Antifungal Agents/pharmacology , Fungicides, Industrial/pharmacology , Structure-Activity Relationship
10.
Bioorg Chem ; 100: 103907, 2020 07.
Article in English | MEDLINE | ID: mdl-32413631

ABSTRACT

The design and synthesis of novel coumarin-thiazolyl ester derivatives of potent DNA gyrase inhibitory activity were the main aims of this study. All the novel synthesized compounds were examined for their antibacterial activity against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella. Compound 8p exhibited excellent antibacterial activity against four bacteria strains with MIC values of 0.05, 0.05, 8, and 0.05 µg/mL, respectively. In vitro drug-resistant bacterial inhibition experiments indicated that compound 8p exhibited the best bacteriostatic effect in the selected compounds and four positive control drugs with MIC values of 4 µg/mL. In vitro enzyme inhibitory assay showed that compound 8p exhibited potent inhibition against DNA gyrase with IC50 values of 0.13 µM. The molecular docking model indicated that compounds 8p can bind well to the DNA gyrase by interacting with amino acid residues. This study demonstrated that the compound 8p can act as the most potent DNA gyrase inhibitor in the reported series of compounds and provide valuable information for the commercial DNA gyrase inhibiting bactericides.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/enzymology , Coumarins/chemistry , Coumarins/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Coumarins/chemical synthesis , Drug Design , Esters/chemical synthesis , Esters/chemistry , Esters/pharmacology , Humans , Molecular Docking Simulation , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Topoisomerase II Inhibitors/chemical synthesis
11.
Bioorg Chem ; 99: 103807, 2020 06.
Article in English | MEDLINE | ID: mdl-32272364

ABSTRACT

The design and synthesis of novel multi-substituted benzo-indole pyrazole Schiff base derivatives of potent DNA gyrase inhibitory activity were the main aims of this study. All the novel synthesized compounds were examined for their antibacterial activities against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella. In addition, we selected 20 compounds for the in vitro antibacterial activities assay of 6 drug-resistant bacteria strains. The result revealed compound 8I-w exhibited excellent antibacterial activity against 4 drug-resistant E. coli bacteria strains with IC50 values of 7.0, 17.0, 13.5, and 1.0 µM, respectively. In vitro enzyme inhibitory assay showed that compound 8I-w displayed potent inhibition against DNA gyrase with IC50 values of 0.10 µM. The molecular docking model indicated that compounds 8I-w can bind well to the DNA gyrase by interacting with various amino acid residues. This study demonstrated that the compound 8I-w can act as the most potent DNA gyrase inhibitor in the reported series of compounds and provide valuable information for the commercial DNA gyrase inhibiting bactericides.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , Drug Discovery , Indoles/pharmacology , Pyrazoles/pharmacology , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Escherichia coli/enzymology , Indoles/chemical synthesis , Indoles/chemistry , Listeria monocytogenes/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Salmonella/drug effects , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
12.
Pestic Biochem Physiol ; 163: 271-279, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31973867

ABSTRACT

In this work, a total of 36 novel 5-(nicotinamido)-1-phenyl-1H-pyrazole-4-carboxylic acid derivatives were designed and synthesized successfully by introducing a carboxyl group based on the N-(1-(4-chlorophenyl)-4-cyano-1H-pyrazol-5-yl)-6-methoxynicotinamide. Among them, the growth inhibition assays on agar plates showed that compound 5IV-d(5-(2-chloronicotinamido)-1-(p-tolyl)-1H-pyrazole-4-carboxylic acid) exhibited the significant antifungal activity against four important fruit and main crop disease fungi (i.e., Valsa mali Miyabe et Yamada, Botryosphaeria dothidea, Helminthosporium maydis and Rhizoctonia cerealis) with EC50 values of 22.6, 14.5, 17.6 and 18.2 µM, respectively. In addition, 5IV-d showed the excellent inhibitory effect against SDH enzymes with IC50 values ranging from 9.4 to 15.6 µM. In vivo bioassay and molecular docking were applied to explore the potential in practical application and combination of modified structure and SDH. The results of structure-activity relationships indicates that the methoxy substitution at the benzene ring attached to the pyrazole ring and a wide variety of substituents could be responsible for the promising antifungal efficacy of the designed compounds. This study demonstrated that the compound 5IV-d can act as the most potent SDH inhibitor in the reported series of compounds.


Subject(s)
Rhizoctonia , Succinate Dehydrogenase , Antifungal Agents , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
13.
Molecules ; 24(7)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30987179

ABSTRACT

To develop new antibacterial agents, a series of novel triazole-containing pyrazole ester derivatives were designed and synthesized and their biological activities were evaluated as potential topoisomerase II inhibitors. Compound 4d exhibited the most potent antibacterial activity with Minimum inhibitory concentration (MIC) alues of 4 µg/mL, 2 µg/mL, 4 µg/mL, and 0.5 µg/mL against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella gallinarum, respectively. The in vivo enzyme inhibition assay 4d displayed the most potent topoisomerase II (IC50 = 13.5 µg/mL) and topoisomerase IV (IC50 = 24.2 µg/mL) inhibitory activity. Molecular docking was performed to position compound 4d into the topoisomerase II active site to determine the probable binding conformation. In summary, compound 4d may serve as potential topoisomerase II inhibitor.


Subject(s)
Anti-Bacterial Agents/chemistry , Pyrazoles/chemistry , Triazoles/chemistry , Anti-Bacterial Agents/pharmacology , DNA Gyrase/chemistry , Esters , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Pyrazoles/pharmacology , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology
14.
Mol Divers ; 23(2): 299-306, 2019 May.
Article in English | MEDLINE | ID: mdl-30168050

ABSTRACT

A series of novel Mannich base derivatives of flavone containing benzylamine moiety was synthesized using the Mannich reaction. The results of antifungal activity are not ideal, but its antifungal effect has a certain increase compared to flavonoids. After that, four bacteria were used to test antibacterial experiments of these compounds; compound 5g (MIC = 0.5, 0.125 mg/L) showed significant inhibitory activity against Staphylococcus aureus and Salmonella gallinarum compared with novobiocin (MIC = 2, 0.25 mg/L). Compound 5s exhibited broad spectrum antibacterial activity (MIC = 1, 0.5, 2, 0.05 mg/L) against four bacteria. The selected compounds 5g and 5s exhibit potent inhibition against Topo II and Topo IV with IC50 values (0.25-16 mg/L). Molecular docking model showed that the compounds 5g and 5s can bind well to the target by interacting with amino acid residues. It will provide some valuable information for the commercial antibacterial agents.


Subject(s)
Anti-Bacterial Agents , DNA Topoisomerase IV/antagonists & inhibitors , Flavones , Mannich Bases , Topoisomerase II Inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Drug Design , Flavones/chemistry , Flavones/pharmacology , Gibberella/drug effects , Gibberella/growth & development , Mannich Bases/chemistry , Mannich Bases/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology
15.
Drug Dev Res ; 79(6): 307-312, 2018 09.
Article in English | MEDLINE | ID: mdl-30256430

ABSTRACT

Hit, Lead & Candidate Discovery To discover succinate dehydrogenase inhibitors with a novel structure, we introduced cinnamic acid structure to optimize the lead structure 1 and synthesized four series of cinnamon-pyrazole carboxamide derivatives. The bioassay data showed that compounds (E)-N-(1-[4-chlorophenyl]-4-cyano-1H-pyrazol-5-yl)-3-(2-fluorophenyl) acrylamide (5III-d) and (E)-3-(2-chlorophenyl)-N-(1-[4-chlorophenyl]-4-cyano-1H-pyrazol-5-yl) acrylamide (5III-f) showed the significant antifungal activity against three fungi. In addition, 5III-d and 5III-f exhibited the excellent inhibitory effect against succinate dehydrogenase (SDH) enzymes with IC50 values ranging from 19.4 to 28.7 µM. The study demonstrates that the chlorine substituent group is present on both the phenyl and pyrazole rings that have a very good effect on the antifungal effect, and the compounds 5III-d and 5III-f can act as potential SDH inhibitors (SDHI) and throw a sprat for a new generation of SDHI.


Subject(s)
Carboxin/analogs & derivatives , Plant Diseases/therapy , Antifungal Agents , Carboxin/chemistry , Carboxin/pharmacology , Cinnamates , Colletotrichum/drug effects , Drug Design , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Rhizoctonia/drug effects
16.
Eur J Med Chem ; 157: 81-87, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30075404

ABSTRACT

The identification of novel Topoisomerase II (Topo II) inhibitors is one of the most attractive directions in the field of bactericide research and development. In our ongoing efforts to pursue the class of inhibitors, six series of 70 novel coumarin-pyrazole carboxamide derivatives were designed and synthesized. As a result of the evaluation against four destructive bacteria, including Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella. Compound 8III-k (MIC = 0.25 mg/L) showed considerable inhibitory activity than ciprofloxacin (MIC = 0.5 mg/L) against Escherichia coli and 8V-c (MIC = 0.05 mg/L) exhibited excellent antibacterial activity than ciprofloxacin (MIC = 0.25 mg/L) against Salmonella. The selected compounds (8III-k, 8V-c and 8V-k) exhibit potent inhibition against Topo II and Topo IV with IC50 values (9.4-25 mg/L). Molecular docking model showed that the compounds 8V-c and 8V-k can bind well to the target by interacting with amino acid residues. It will provide some valuable information for the commercial Topo II inhibiting bactericides.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coumarins/pharmacology , Pyrazoles/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Coumarins/chemistry , DNA Topoisomerases, Type II/metabolism , Dose-Response Relationship, Drug , Drug Design , Escherichia coli/drug effects , Escherichia coli/growth & development , Humans , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Molecular Docking Simulation , Molecular Structure , Pyrazoles/chemistry , Salmonella/drug effects , Salmonella/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Structure-Activity Relationship
17.
Chem Pharm Bull (Tokyo) ; 66(4): 358-362, 2018.
Article in English | MEDLINE | ID: mdl-29607900

ABSTRACT

Acetohydroxy acid synthase (AHAS; EC 2.2.1.6, also referred to as acetolactate synthase, ALS) has been considered as an attractive target for the design of herbicides. In this work, an optimized pyrazole sulfonamide base scaffold was designed and introduced to derive novel potential AHAS inhibitors by introducing a pyrazole ring in flucarbazone. The results of in vivo herbicidal activity evaluation indicates compound 3b has the most potent activity with rape root length inhibition values of 81% at 100 mg/L, and exhibited the best inhibitory ability against Arabidopsis thaliana AHAS. With molecular docking, compound 3b insert into Arabidopsis thaliana AHAS stably by an H-bond with Arg377 and cation-π interactions with Arg377, Trp574, Tyr579. This study suggests that compound 3b may serve as a potential AHAS inhibitor which can be used as a novel herbicides and provides valuable clues for the further design and optimization of AHAS inhibitors.


Subject(s)
Acetolactate Synthase/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Acetolactate Synthase/metabolism , Arabidopsis/enzymology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
18.
Pest Manag Sci ; 73(8): 1585-1592, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27860139

ABSTRACT

BACKGROUND: Succinate dehydrogenase (SDH) plays an important role in the Krebs cycle, which is considered as an attractive target for development of succinate dehydrogenase inhibitors (SDHIs) based on antifungal agents. Thus, in order to discover novel molecules with high antifungal activities, SDH as the target for a series of novel nicotinamide derivatives bearing substituted pyrazole moieties were designed and synthesised via a one-pot reaction. RESULTS: The biological assay data showed that compound 3 l displayed the most potent antifungal activity with EC50 values of 33.5 and 21.4 µm against Helminthosporium maydis and Rhizoctonia cerealis, respectively. Moreover, 3 l exhibited the best inhibitory ability against SDH enzymes. The results of docking simulation showed that 3 l was deeply embedded into the SDH binding pocket, and the binding model was stabilised by a cation-π interaction with Arg 43, Tyr 58 and an H-bond with Trp 173. CONCLUSION: The study suggests that the pyrazole nicotinamide derivative 3 l may serve as a potential SDHI that can be used as a novel antifungal agent, and provides valuable clues for the further design and optimisation of SDH inhibitors. © 2016 Society of Chemical Industry.


Subject(s)
Drug Design , Niacinamide/chemistry , Niacinamide/pharmacology , Pyrazoles/chemistry , Succinate Dehydrogenase/antagonists & inhibitors , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Catalytic Domain , Chemistry Techniques, Synthetic , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Helminthosporium/drug effects , Molecular Docking Simulation , Niacinamide/chemical synthesis , Niacinamide/metabolism , Rhizoctonia/drug effects , Succinate Dehydrogenase/chemistry , Succinate Dehydrogenase/metabolism
19.
Chem Pharm Bull (Tokyo) ; 64(12): 1755-1762, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27725363

ABSTRACT

Acetylcholinesterase (AChE) is a key enzyme which present in the central nervous system of living organisms. Organophosphorus pesticides (OPs) that serve as insecticides are AChE inhibitors which have been used widely in agriculture. A series of novel OPs containing pyrazole moiety have been designed and synthesized. The biological evaluation indicated compound 4e appeared 81% larvicidal activity against Plutella xylostella at the concentration of 0.1 mg/L and the inhibition of AChE by compound 4e was distinctly enhanced with the increasing doses. Molecular docking of compound 4e into the three dimensional X-ray structure of the Drosophila melanogaster AChE (DmAChE, PDB code: 1QO9) was carried out utilizating the Discovery Studio (DS), the binding model revealed that the title structure was tightly embedded in the binding sites of DmAChE. Therefore, we suggest that compound 4e may serve as a novel AChE inhibitor that can be utilized as a new insecticidal drug.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Drug Design , Insecticides/pharmacology , Moths/drug effects , Organophosphonates/chemistry , Organophosphonates/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Animals , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Insecticides/chemical synthesis , Insecticides/chemistry , Molecular Docking Simulation , Moths/enzymology , Organophosphonates/chemical synthesis , Structure-Activity Relationship
20.
Bioorg Med Chem ; 24(19): 4652-4659, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27515719

ABSTRACT

Mitogen activated protein kinase (MAPK) signal transduction pathway has been proved to play an important role in tumorigenesis and cancer development. MEK inhibitor has been demonstrated significant clinical benefit for blocking MAPK pathway activation and possibly could block reactivation of the MAPK pathway at the time of BRAF inhibitor resistance. Twenty N-(benzyloxy)-1,3-diphenyl-1H-pyrazole-4-carboxamide derivatives have been designed and synthesized as MEK inhibitors, and their biological activities were evaluated. Among these compounds, compound 7b showed the most potent inhibitory activity with IC50 of 91nM for MEK1 and GI50 value of 0.26µM for A549 cells. The SAR analysis and docking simulation were performed to provide crucial pharmacophore clues that could be used in further structure optimization.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , MAP Kinase Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , MAP Kinase Signaling System/drug effects , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/enzymology , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...