Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 287: 117345, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34004477

ABSTRACT

Iron-bearing nanoparticles (IBNPs) were abundant in particulate matter (PM). Due to their high reactivity, IBNPs were considered hazardous to human health, however, their toxic mode-of-action(s) are highly unclear. Ferroptosis is a novel programmed cell death (PCD) that highly associated with intracellular iron. However, the pro-ferroptotic effect of IBNPs has not been characterized. To this end, we ought to investigate whether and how IBNPs (synthetic γ-Fe2O3 and Fe3O4 NPs were selected as the model compounds) are involved in ferroptosis. We found that human umbilical vein endothelial cells (HUVECs) phagocytized large qualities of γ-Fe2O3 and Fe3O4 NPs, resulting in increased intracellular iron level. We further observed the disrupted cystine/glutamate reverse transporter (System Xc-) and glutathione peroxidase 4 (GPX4) signaling in γ-Fe2O3 and Fe3O4 NPs-challenged HUVECs. γ-Fe2O3 and Fe3O4 NPs could also cause mitochondrial fusion and fission dysregulation, activate lipid peroxidation and iron metabolism-related genes in a P53-dependent manner. Together, the ferroptotic activity of IBNPs should be acknowledged for the risk assessment of PM associated health effects.


Subject(s)
Ferroptosis , Nanoparticles , Human Umbilical Vein Endothelial Cells , Humans , Iron , Lipid Peroxidation , Phospholipid Hydroperoxide Glutathione Peroxidase
2.
Chemosphere ; 275: 130034, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33652285

ABSTRACT

Polybrominated diphenyl ethers (PBDEs), a kind of flame retardants, were widely used in the furniture, textile and electronics industries. Because of their lipophilic, persistent and bio-accumulative properties, PBDEs were listed on the Stockholm Convention as typical persistent organic pollutants (POPs). We have previously reported that a highly active, quinone-type metabolite of PBDEs (PBDEQ) causes DNA damage and subsequently triggers apoptosis. However, it is remaining unclear whether PBDEQ provokes protein damage and stimulates corresponding signaling cascade. Using human normal liver (LO2) cells as an in vitro model, we demonstrated that PBDEQ causes oxidative protein damage through excess reactive oxygen species (ROS). Consistently, we found PBDEQ exposure causes the depletion of protein thiol group, the appearance of carbonyl group and the accumulation of protein aggregates. Endoplasmic reticulum (ER) stress was involved in the repair of oxidized proteins. Under the scenario of severe damage, LO2 cells degrade oxidized proteins through ubiquitin-proteasome system (UPS) and autophagy. The blockage of these protein degradation pathways aggravates PBDEQ-induced cytotoxicity in LO2 cells, whilst antioxidant N-acetyl-cysteine (NAC) rescues PBDEQ-induced oxidative protein damage conversely. In summary, our current study first demonstrated PBDEQ-induced protein oxidative damage in LO2 cells, which offer a better understanding of the cytotoxicity of PBDEs and corresponding metabolites.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Autophagy , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity , Humans , Lysosomes , Oxidative Stress , Proteasome Endopeptidase Complex , Quinones , Ubiquitin
3.
Environ Pollut ; 268(Pt B): 115921, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33187846

ABSTRACT

Tetrachlorobenzoquinone (TCBQ) is a common metabolite of persistent organic pollutants pentachlorophenol (PCP) and hexachlorobenzene (HCB). Current reports on the toxicity of TCBQmainly focused on its reproductive toxicity, neurotoxicity, carcinogenicity and cardiovascular toxicity. However, the possible immunotoxicity of TCBQ remains unclear. The release of neutrophil extracellular traps (NETs) is a recently discovered immune response mechanism, however, excess NETs play a pathogenic role in various immune diseases. In an attempt to address concerns regarding the immunotoxicity of TCBQ, we adopted primary mouse neutrophils as the research object, explored the influence of TCBQ on the formation of NETs. The results showed that TCBQ could induce NETs rapidly in a reactive oxygen species (ROS)-dependent manner. Moreover, TCBQ promoted the phosphorylation of c-Jun N-terminal kinase (JNK) mitogen activated protein kinase (MAPK), but not p38 or extracellular signal related kinase (ERK) in neutrophils. Mechanistically, JNK activation enhanced the expression of NADPH oxidase enzyme 2 (NOX2), which further accelerated the generation of ROS and thus amplified the formation of NETs. The pharmacologic blockage of JNK or NOX2 effectively ameliorated TCBQ-induced ROS and NETs, implying that ROS-JNK-NOX2 positive feedback loop was involved in TCBQ-induced NETs. In conclusion, we speculated that targeting NETs formation would be a promising therapeutic strategy in modulating the immunotoxicity of TCBQ.


Subject(s)
Extracellular Traps , Animals , Benzoquinones , Feedback , Hydrocarbons, Chlorinated , Mice , Neutrophils , Reactive Oxygen Species
4.
Chemosphere ; 264(Pt 1): 128413, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33017703

ABSTRACT

Halogenated quinones are representative metabolites of persistent organic pollutants. Tetrachlorobenzoquinone (TCBQ) is a reactive metabolite of the widely used fungicide hexachlorobenzene (HCB) and wood preservative pentachlorophenol (PCP). Our previous studies have demonstrated that TCBQ induced neuron-like cell apoptosis in a reactive oxygen species (ROS)-dependent manner. Here, we found that TCBQ caused lipid peroxidation and cellular morphological changes including shrinked mitochondrial size, suggesting the involvement of a recently uncovered form of programmed cell death (PCD), ferroptosis. Indeed, we then identified that ferroptosis is a novel PCD driven by TCBQ, which was correlated with a decrease in glutathione peroxidase 4 (GPX4) level and iron accumulation by altering iron metabolism. Notably, nuclear factor erythroid-derived 2-like 2 (Nrf2) is a negative regulator in modulating the outcomes of ferroptosis as an adaptive cellular defense response. Nrf2 activation enhanced iron storage capacity and GPX4 activity by elevating ferritin heavy chain 1 (FTH1) expression and glutathione (GSH) level, respectively. On the contrary, Nfe2l2 (Nrf2) deficiency enhanced PC12 cells susceptibility to ferroptosis.


Subject(s)
Ferroptosis , Hydrocarbons, Chlorinated , Animals , Benzoquinones , PC12 Cells , Rats , Reactive Oxygen Species
5.
Toxicol Appl Pharmacol ; 407: 115241, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32937103

ABSTRACT

Neurological diseases were often characterized by progressive neuronal death, and emerging evidences suggested that ferroptosis may be an active driver of multiple neurodegenerative diseases. However, the mechanisms underlying ferroptosis in neuron cells are unclear. Here, we demonstrated that ferroptotic stimuli caused injury in neuron-like PC12 cells by modulating the expression of proteins involved in iron metabolism and lipid peroxidation at multiple levels, such as altering iron import/export, activating ferritinophagy, and decreasing glutathione (GSH) level. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates multiple genes involved in ferroptosis, however, its exact role remain elusive. Our mechanistic inquiry revealed that Nrf2 expression enhanced iron storage capacity by increasing ferritin heavy chain 1 (FTH1) expression in PC12 cells. Moreover, Nrf2 alleviated the decrease in GSH level by promoting the expression of genes related to GSH synthesis, including solute carrier family 7 member 11 (SLC7A11) and cysteine ligase (GCL). The contribution of Nrf2 on ferroptosis resistance was further verified by increasing cell tolerance to oxidative stress. Furthermore, Nfe2l2 (Nrf2) knockdown sensitized cells to ferroptotic cell death. Taken together, our findings suggested that iron accumulation caused by altering iron metabolism and the decrease of GSH content are key factors in determining ferroptosis in PC12 cells, and Nrf2 inhibits ferroptosis by combating iron-induced oxidative stress. Our present study provided new clues for the intervention and prevention against ferroptosis-associated neurological diseases.


Subject(s)
Ferroptosis/drug effects , Glutathione/biosynthesis , Iron Overload/drug therapy , NF-E2-Related Factor 2/biosynthesis , Neurons/drug effects , Amino Acid Transport Systems, Acidic/biosynthesis , Amino Acid Transport Systems, Acidic/genetics , Animals , Gene Knockdown Techniques , Glutathione/deficiency , Iron/metabolism , Lipid Peroxidation/drug effects , NF-E2-Related Factor 2/drug effects , PC12 Cells , RNA, Small Interfering , Rats
6.
Part Fibre Toxicol ; 17(1): 46, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948194

ABSTRACT

BACKGROUND: With the development of zinc oxide nanoparticles (ZnO NPs) in the field of nanotechnology, their toxicological effects are attracting increasing attention, and the mechanisms for ZnO NPs neurotoxicity remain obscure. In an attempt to address concerns regarding neurotoxicity of ZnO NPs, we explored the relationship between free zinc ions, reactive oxygen species (ROS) and neurotoxic mechanisms in ZnO NPs-exposed PC12 cells. RESULT: This study demonstrated the requirement of free zinc ions shed by ZnO NPs to over generation of intracellular ROS. Next, we identified autophagic cell death was the major mode of cell death induced by ZnO NPs, and autophagosome accumulation resulted from not only induction of autophagy, but also blockade of autophagy flux. We concluded that autophagic cell death, resulting from zinc ions-ROS-c-Jun N-terminal kinase (JNK)-autophagy positive feedback loop and blockade of autophagosomal-lysosomal fusion, played a major role in the neurotoxicity of ZnO NPs. CONCLUSION: Our study contributes to a better understanding of the neurotoxicity of ZnO NPs and might be useful for designing and developing new biosafety nanoparticles in the future.


Subject(s)
Metal Nanoparticles/toxicity , Zinc Oxide/toxicity , Autophagic Cell Death , Autophagosomes , Autophagy , Cell Death , Nanoparticles , Reactive Oxygen Species , Toxicity Tests
7.
Chem Res Toxicol ; 33(6): 1497-1507, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32434321

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent organic environmental pollutants. According to previous epidemiological reports, PCBs exposure is highly related to atherosclerosis. However, studies of PCBs metabolites and atherosclerosis and corresponding mechanism studies are scarce. In this study, we evaluated the effect of 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ), a presumptive PCB metabolite, on atherosclerosis. Aortic plaques were increased in PCB29-pQ-treated ApoE-/- mice [intraperitoneally (i.p.) injection of 5 mg/kg body weight of PCB29-pQ once a week for 12 continuous weeks, high-fat feeding]. We observed lipids accumulation and the release of interleukin-1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) in ApoE-/- mice. In addition, we found that PCB29-pQ promoted the levels of total cholesterol, free cholesterol, triglyceride, and cholesteryl ester. Mechanism investigation indicated that PCB29-pQ induces the activation of three branches of endoplasmic reticulum (ER) stress response, that is, phosphorylated protein kinase R-like ER kinase (p-PERK), eukaryotic translation initiation factor 2α (eIF2α) and transcription factor 6 (ATF6), which is responsible for downstream necrosis. More importantly, we found the silence of CD36 is able to reverse PCB29-pQ-induced adverse effects completely. Overall, PCB29-pQ exposure resulted in lipid accumulation, ER stress response, apoptosis, and pro-inflammatory cytokines release via CD36, ultimately leading to atherosclerosis.


Subject(s)
Atherosclerosis/chemically induced , Benzoquinones/toxicity , CD36 Antigens/metabolism , Endoplasmic Reticulum Stress/drug effects , Environmental Pollutants/toxicity , Lipid Metabolism/drug effects , Polychlorinated Biphenyls/toxicity , Animals , Apoptosis/drug effects , Atherosclerosis/metabolism , CD36 Antigens/genetics , Cholesterol/metabolism , Cytokines/metabolism , Diet, High-Fat , Male , Mice , Mice, Knockout, ApoE , Necrosis/chemically induced , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...