Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
IEEE Trans Biomed Eng ; 71(5): 1577-1586, 2024 May.
Article in English | MEDLINE | ID: mdl-38113160

ABSTRACT

The H-FIRE (high-frequency irreversible electroporation) protocol employs high-frequency bipolar pulses (HFBPs) with a width of ∼1 µs for tumor ablation with slight muscle contraction. However, H-FIRE pulses need a higher electric field to generate a sufficient ablation effect, which may cause undesirable thermal damage. OBJECTIVE: Recently, combining short high-voltage IRE monopolar pulses with long low-voltage IRE monopolar pulses was shown to enlarge the ablation region. This finding indicates that combining HFBPs with low-voltage bipolar pulses (LVBPs), which are called composited bipolar pulses (CBPs), may enhance the ablation effect. METHODS: This study designed a pulse generator by modifying a full-bridge inverter. The cell suspension and 3D tumor mimic experiments (U251 cells) were performed to examine the enhancement of the ablation effect. RESULTS: The generator outputs HFBPs with 0-±2.5 kV and LVBPs with 0-±0.3 kV in one period. The pulse parameters are adjustable by programming on a human-computer interface. The cell suspension experiments showed that CBPs could enhance cytotoxicity, as compared to HFBPs with no cell-killing effect. Even at lower electric energy, the cell viability by CBPs was significantly lower than that of the HFBPs protocol. The ablation experiments on the 3D tumor mimic showed that the CBPs could create a larger connected ablation area. In contrast, the HFBPs protocol with a similar dose generated a nonconnected ablation area. CONCLUSION: Results indicate that the CBPs protocol can enhance the ablation effect of HFBPs protocol. SIGNIFICANCE: This proposed generator that uses the CBPs principle may be a useful tool for tumor ablation.


Subject(s)
Electroporation , Humans , Electroporation/methods , Cell Line, Tumor , Ablation Techniques/methods , Cell Survival/physiology , Equipment Design
2.
Front Plant Sci ; 14: 1162828, 2023.
Article in English | MEDLINE | ID: mdl-37180398

ABSTRACT

Panicle development is crucial to increase the grain yield of rice (Oryza sativa). The molecular mechanisms of the control of panicle development in rice remain unclear. In this study, we identified a mutant with abnormal panicles, termed branch one seed 1-1 (bos1-1). The bos1-1 mutant showed pleiotropic defects in panicle development, such as the abortion of lateral spikelets and the decreased number of primary panicle branches and secondary panicle branches. A combined map-based cloning and MutMap approach was used to clone BOS1 gene. The bos1-1 mutation was located in chromosome 1. A T-to-A mutation in BOS1 was identified, which changed the codon from TAC to AAC, resulting in the amino acid change from tyrosine to asparagine. BOS1 gene encoded a grass-specific basic helix-loop-helix transcription factor, which is a novel allele of the previously cloned LAX PANICLE 1 (LAX1) gene. Spatial and temporal expression profile analyses showed that BOS1 was expressed in young panicles and was induced by phytohormones. BOS1 protein was mainly localized in the nucleus. The expression of panicle development-related genes, such as OsPIN2, OsPIN3, APO1, and FZP, was changed by bos1-1 mutation, suggesting that the genes may be the direct or indirect targets of BOS1 to regulate panicle development. The analysis of BOS1 genomic variation, haplotype, and haplotype network showed that BOS1 gene had several genomic variations and haplotypes. These results laid the foundation for us to further dissect the functions of BOS1.

3.
Radiol Oncol ; 57(1): 51-58, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36653949

ABSTRACT

BACKGROUND: Pancreatic islet transplantation via infusion through the portal vein, has become an established clinical treatment for patients with type 1 diabetes. Because the engraftment efficiency is low, new approaches for pancreatic islets implantation are sought. The goal of this study is to explore the possibility that a non-thermal irreversible electroporation (NTIRE) decellularized matrix in the liver could be used as an engraftment site for pancreatic islets. MATERIALS AND METHODS: Pancreatic islets or saline controls were injected at sites pre-treated with NTIRE in the livers of 7 rats, 16 hours after NTIRE treatment. Seven days after the NTIRE treatment, islet graft function was assessed by detecting insulin and glucagon in the liver with immunohistochemistry. RESULTS: Pancreatic islets implanted into a NTIRE-treated volume of liver became incorporated into the liver parenchyma and produced insulin and glucagon in 2 of the 7 rat livers. Potential reasons for the failure to observe pancreatic islets in the remaining 5/7 rats may include local inflammatory reaction, graft rejection, low numbers of starting islets, timing of implantation. CONCLUSIONS: This study shows that pancreatic islets can become incorporated and function in an NTIRE-generated extracellular matrix niche, albeit the success rate is low. Advances in the field could be achieved by developing a better understanding of the mechanisms of failure and ways to combat these mechanisms.


Subject(s)
Glucagon , Islets of Langerhans , Rats , Animals , Liver/surgery , Insulin , Extracellular Matrix , Electroporation
4.
IEEE Trans Biomed Eng ; 70(4): 1359-1367, 2023 04.
Article in English | MEDLINE | ID: mdl-36279349

ABSTRACT

Hundreds of high frequency bipolar pulse bursts with ∼1 µs have been suggested to alleviate muscle contractions and pain during the irreversible electroporation (IRE) tumor treatment. This study is performed to verify whether eight bursts of high frequency reversible electroporation pulses (HFREs) with bleomycin could be used for electrochemotherapy (ECT) tumor treatment. Firstly, in vitro experiments on B16 cells are performed to determine the cytotoxicity of the HFREs with bleomycin. The result indicates that the protocol of HFREs with bleomycin has a significant killing effect compared with only bleomycin, in which the used HFRE pulses are set to induce high membrane permeabilization while maintaining high cell viability. The immunogenic cell death (ICD) that generates danger associated molecular patterns (DAMPs) could trigger an adaptive immune response against tumors. We demonstrated that HFREs with bleomycin could trigger the hallmarks of ICD with obvious up-regulation of DAMPs, including ATP, HMGB1, and CRT. The ICD process may begin at 3 h but perform at 6 h after HFREs with bleomycin stimulation. The in vivo experiment on mice tumor treatment also showed that the protocol of HFREs with bleomycin could inhibit tumor growth with more cytotoxic CD8+ T cells infiltration. The results obtained from in vitro and in vitro experiments preliminary confirmed that the HFREs with bleomycin could be used for ECT tumor treatment associated with the hallmarks of ICD and preliminary trigger the adaptive immune response.


Subject(s)
Electrochemotherapy , Neoplasms , Humans , Bleomycin/pharmacology , Bleomycin/therapeutic use , Electrochemotherapy/methods , Neoplasms/drug therapy , Cell Death
5.
Ann Biomed Eng ; 50(12): 1964-1973, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35852648

ABSTRACT

Irreversible electroporation (IRE) by high-strength electric pulses is a biomedical technique that has been effectively used for minimally invasive tumor therapy while maintaining the functionality of adjacent important tissues, such as blood vessels and nerves. In general, pulse delivery using needle electrodes can create a reversible electroporation region beyond both the ablation area and the vicinity of the needle electrodes, limiting enlargement of the ablation area. Electrochemical therapy (EChT) can also be used to ablate a tumor near electrodes by electrolysis using a direct field with a constant current or voltage (DC field). Recently, reversible electroporated cells have been shown to be susceptible to electrolysis at relatively low doses. Reversible electroporation can also be combined with electrolysis for tissue ablation. Therefore, the objective of this study is to use electrolysis to remove the reversible electroporation area and thereby enlarge the ablation area in potato slices in vitro using a pulsed field with a bias DC field (constant voltage). We call this protocol electrolytic irreversible electroporation (E-IRE). The area over which the electrolytic effect induced a pH change was also measured. The results show that decreasing the pulse frequency using IRE alone is found to enlarge the ablation area. The ablation area generated by E-IRE is significantly larger than that generated by using IRE or EChT alone. The ablation area generated by E-IRE at 1 Hz is 109.5% larger than that generated by IRE, showing that the reversible electroporation region is transformed into an ablation region by electrolysis. The area with a pH change produced by E-IRE is larger than that produced by EChT alone. Decreasing the pulse frequency in the E-IRE protocol can further enlarge the ablation area. The results of this study are a preliminary indication that the E-IRE protocol can effectively enlarge the ablation area and enhance the efficacy of traditional IRE for use in ablating large tumors.


Subject(s)
Ablation Techniques , Electroporation , Electroporation/methods , Electrolysis/methods , Electricity , Electrodes
6.
Bioelectrochemistry ; 144: 108010, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34902663

ABSTRACT

Electroporation achieved by the application of pulsed electric field is successfully used for clinical tumor ablation. Electrochemotherapy (ECT) and irreversible electroporation (IRE), which are two protocols based on electroporation, have been shown to ablate only tumor cells while preserving the function of normal blood vessels. However, the mechanism of this unique advantage is still not fully understood. This study first built a multilayer dielectric model of both normal and tumor blood vessels to study the electroporation effect. Since endothelial cells are the main component of normal and tumor blood vessels, this study mainly analyzed the electroporation effect on endothelial cells. The rich vascular smooth muscle cells (VSMCs), could play a protective function, allowing endothelial cells to suffer less electroporation effect in normal blood vessels. Interestingly, the endothelial cells in tumor blood vessel sustained a stronger electroporation effect than those in normal blood vessels due to the lack of VSMCs. This study may provide a conceivable explanation for why the structure of endothelial cells in normal blood vessels is preserved during electroporation treatment. This study also demonstrates that ECT or IRE may also damage both tumor blood vessels and cells while preserving normal blood vessels, which benefits complete tumor ablation.


Subject(s)
Endothelial Cells
7.
Plant Cell Physiol ; 61(12): 2111-2125, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33067639

ABSTRACT

Tiller angle is a key factor determining rice plant architecture, planting density, light interception, photosynthetic efficiency, disease resistance and grain yield. However, the mechanisms underlying tiller angle control are far from clear. In this study, we identified a mutant, termed bta1-1, with an enlarged tiller angle throughout its life cycle. A detailed analysis reveals that BTA1 has multiple functions because tiller angle, shoot gravitropism and tolerance to drought stress are changed in bta1-1 plants. Moreover, BTA1 is a positive regulator of shoot gravitropism in rice. Shoot responses to gravistimulation are disrupted in bta1-1 under both light and dark conditions. Gene cloning reveals that bta1-1 is a novel mutant allele of LA1 renamed la1-SN. LA1 is able to rescue the tiller angle and shoot gravitropism defects observed in la1-SN. The nuclear localization signal of LA1 is disrupted by la1-SN, causing changes in its subcellular localization. LA1 is required to regulate the expression of auxin transporters and signaling factors that control shoot gravitropism and tiller angle. High-throughput mRNA sequencing is performed to elucidate the molecular and cellular functions of LA1. The results show that LA1 may be involved in the nucleosome and chromatin assembly, and protein-DNA interactions to control gene expression, shoot gravitropism and tiller angle. Our results provide new insight into the mechanisms whereby LA1 controls shoot gravitropism and tiller angle in rice.


Subject(s)
Gene Expression Regulation, Plant/physiology , Gravitropism , Indoleacetic Acids/metabolism , Oryza/physiology , Plant Proteins/physiology , Plant Shoots/physiology , Biological Transport/physiology , Genes, Plant/physiology , Oryza/metabolism , Plant Shoots/metabolism , Signal Transduction/physiology
8.
Phys Med Biol ; 65(22): 225001, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33053520

ABSTRACT

Irreversible electroporation (IRE) is a minimally invasive tumor therapy using pulsed electric field with high intensity while the important tissues such as blood vessel, bile duct, and nerve are preserved. In addition to ablation area, reversible electroporation (RE) region is also generated using needle electrodes for pulse delivery. The goal of this work is to study the generation of RE region and ablation region on a 2D lung adenocarcinoma cell model in vitro. The tumor model is exposed to electric pulses with various number. The calcium AM and propidium iodide (PI) are examined to detect the ablation area and electroporation area, respectively. The results show that electroporation area firstly tends to plateau after approximately 50 pulses, while the ablation area continues to increase. The percentage of IRE area in total electroporation area increases with additional pulses, which means that RE region could be gradually turned into ablation area with increased pulse number. However, the percentage of IRE area only achieves to 54% for 200 pulses, which indicates that RE region still cannot be completely removed. RE and IRE thresholds appear to converge as the number of pulses increases. An equation between pulse number and the electric field threshold of ablation including the electric field threshold of RE is also provided for lung adenocarcinoma cell ablation. This work may have the value for the optimization of IRE protocols on tumor ablation.


Subject(s)
Adenocarcinoma of Lung/therapy , Electricity , Electrodes , Electroporation/methods , Lung Neoplasms/therapy , Animals , Humans , In Vitro Techniques , Tumor Cells, Cultured
9.
Int J Mol Sci ; 21(16)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824274

ABSTRACT

Polycomb repressive complex 1 (PRC1) and PRC2 are the major complexes composed of polycomb-group (PcG) proteins in plants. PRC2 catalyzes trimethylation of lysine 27 on histone 3 to silence target genes. Like Heterochromatin Protein 1/Terminal Flower 2 (LHP1/TFL2) recognizes and binds to H3K27me3 generated by PRC2 activities and enrolls PRC1 complex to further silence the chromatin through depositing monoubiquitylation of lysine 119 on H2A. Mutations in PcG genes display diverse developmental defects during shoot apical meristem (SAM) maintenance and differentiation, seed development and germination, floral transition, and so on so forth. PcG proteins play essential roles in regulating plant development through repressing gene expression. In this review, we are focusing on recent discovery about the regulatory roles of PcG proteins in SAM maintenance, root development, embryo development to seedling phase transition, and vegetative to reproductive phase transition.


Subject(s)
Gene Expression Regulation, Plant , Meristem/metabolism , Plant Proteins/metabolism , Polycomb-Group Proteins/metabolism , Arabidopsis , Gene Expression Regulation, Developmental , Gene Silencing , Meristem/genetics , Meristem/growth & development , Plant Proteins/genetics , Polycomb-Group Proteins/genetics
10.
Bioelectrochemistry ; 132: 107432, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31918056

ABSTRACT

The decrease in killing sensitivity of the cell membrane to microsecond pulse electric fields (µs-PEFs) is ascribed mainly to the aberrant morphology of cancer cells, with clear statistical correlations observed between cell size and shape defects and the worsening of the electrical response to the PEF. In this paper, nanosecond pulsed electric fields (ns-PEFs) inducing the nucleus effect and µs-PEFs targeting the cell membrane were combined to enhance destruction of irregular cells. The fluorescence dissipation levels of the nuclear membrane and cell membrane exposed to the µs, ns, and ns + µs pulse protocols were measured and compared, and a dynamic electroporation model of irregular cells was established by the finite element software COMSOL. The results suggest that the cell membrane disruption induced by µs-PEFs is worse for extremely irregular cells and depends strongly on cellular morphology. However, the nuclear membrane disruption induced by ns-PEFs does not scale with irregularity, suggesting the use of a combination of ns-PEFs with µs-PEFs to target the nuclear and cell membranes. We demonstrate that ns + µs pulses can significantly enhance the fluorescence dissipation of the cell and nuclear membranes. Overall, our findings indicate that ns + µs pulses may be useful in the effective killing of irregular cells.


Subject(s)
Electricity , A549 Cells , Cell Membrane/metabolism , Finite Element Analysis , Fluorescence , Humans , Nuclear Envelope/metabolism
11.
IEEE Trans Biomed Eng ; 67(4): 957-965, 2020 04.
Article in English | MEDLINE | ID: mdl-31265380

ABSTRACT

Irreversible electroporation (IRE) employs brief, high-electric field pulses to ablate tumors while preserving the extracellular matrix. Recently, we showed that combining short high-voltage (SHV) IRE pulses and long low-voltage (LLV) IRE pulses can enlarge the tissue ablation region, presumably through a synergistic effect. OBJECTIVE: The goal of this study is to further investigate the effect of this combination on a 2-D cell layer tumor model. METHODS: 2-D layers of tumor cells are exposed to various SHV and LLV combinations, and the results of propidium iodide (PI) and fluorescein diacetate staining are examined to correlate treatment protocols with the ensuing irreversible and reversible electroporation areas. RESULTS: The combination of SHV+LLV pulses produces a larger area of electroporation and ablation than LLV+SHV pulses, LLV pulses alone, and SHV pulses alone. CONCLUSION: Judiciously combining SHV and LLV pulses can produce a synergistic effect that enlarges the electroporation-induced ablation area. A hypothetical explanation for this effect is that it involves a combination of pore expansion and electrolysis induced by LLV pulses in the area that had been reversibly permeabilized by the SHV pulses. SIGNIFICANCE: This paper is valuable for the design of improved IRE protocols and provides a hypothesis for the mechanisms involved.


Subject(s)
Ablation Techniques , Somatostatin-Secreting Cells , Electricity , Electrolysis , Electroporation
12.
Technol Cancer Res Treat ; 18: 1533033819876307, 2019 01 01.
Article in English | MEDLINE | ID: mdl-31564220

ABSTRACT

BACKGROUND: Nonthermal irreversible electroporation is a minimally invasive surgery technology that employs high and brief electric fields to ablate undesirable tissues. Nonthermal irreversible electroporation can ablate only cells while preserving intact functional properties of the extracellular structures. Therefore, nonthermal irreversible electroporation can be used to ablate tissues safely near large blood vessels, the esophagus, or nerves. This suggests that it could be used for thyroid ablation abutting the esophagus. This study examines the feasibility of using nonthermal irreversible electroporation for thyroid ablation. METHODS: Rats were used to evaluate the effects of nonthermal irreversible electroporation on the thyroid. The procedure entails the delivery of high electric field pulses (1-3 kV/cm, 100 microseconds) between 2 surface electrodes bracing the thyroid. The right lobe was treated with various nonthermal irreversible electroporation pulse sequences, and the left was the control. After 24 hours of the nonthermal irreversible electroporation treatment, the thyroid was examined with hemotoxylin and eosin histological analysis. Mathematical models of electric fields and the Joule heating-induced temperature raise in the thyroid were developed to examine the experimental results. RESULTS: Treatment with nonthermal irreversible electroporation leads to follicular cells damage, associated with cell swelling, inflammatory cell infiltration, and cell ablation. Nonthermal irreversible electroporation spares the trachea structure. Unusually high electric fields, for these types of tissue, 3000 V/cm, are needed for thyroid ablation. The mathematical model suggests that this may be related to the heterogeneous structure of the thyroid-induced distortion of local electric fields. Moreover, most of the tissue does not experience thermal damage inducing temperature elevation. However, the heterogeneous structure of the thyroid may cause local hot spots with the potential for local thermal damage. CONCLUSION: Nonthermal irreversible electroporation with 3000 V/cm can be used for thyroid ablation. Possible applications are treatment of hyperthyroidism and thyroid cancer. The highly heterogeneous structure of the thyroid distorts the electric fields and temperature distribution in the thyroid must be considered when designing treatment protocols for this tissue type.


Subject(s)
Electroporation/methods , Models, Theoretical , Thyroid Gland/surgery , Algorithms , Animals , Biomarkers , Immunohistochemistry , Minimally Invasive Surgical Procedures , Rats , Thyroid Gland/metabolism , Thyroid Gland/pathology
13.
Ann Biomed Eng ; 47(7): 1552-1563, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30953220

ABSTRACT

Irreversible electroporation (IRE), is a new non-thermal tissue ablation technology in which brief high electric field pulses are delivered across the target tissue to induce cell death by irreversible permeabilization of the cell membrane. A deficiency of conventional IRE is that the ablation zone is relatively small, bounded by the irreversible electroporation isoelectric field margin. In the previous studies we have introduced a new treatment protocol that combines few short high voltage (SHV) pulses with long low-voltage (LLV) pulses. In the previous studies, we also have shown that the addition of few SHV pulses increases by almost a factor of two the area ablated by a protocol that employs only the LLV pulses. This study employs potato and gel phantom to generate a plausible explanation for the mechanism. The study provides circumstantial evidence that the mechanism involved is the production of electrolytic compounds by the LLV pulse sequence, which causes tissue ablation beyond the margin of the irreversible electroporation isoelectric field generated by the SHV pulses, presumable to the reversible electroporation isoelectric field margin generated by the SHV pulses.


Subject(s)
Electroporation , Ablation Techniques , Electrodes , Phantoms, Imaging , Solanum tuberosum
14.
Bioelectrochemistry ; 125: 79-89, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30292929

ABSTRACT

This study examined the temporal physiological and molecular events following the treatment of the liver with a tissue ablation modality that combined electroporation with electrolysis (E2). Rat liver was treated with an E2 waveform and the tissue examined, 1 h, 3 h, 6 h and 24 h with: H&E, Masson Trichrome, TUNEL stains and Western blot. H&E and TUNEL stains have shown that cell death began to be evident 3 h and hepatocyte regeneration was seen 24 h after treatment. H&E and Masson trichrome have shown that the extracellular matrix and the large lumens, appeared intact after E2. Western blot has shown the following molecular events after E2: cleaved caspase 3-downgraded at 1 h, upgraded at 24 h (apoptosis); cleaved Caspase 1 and cleaved GSDMD-upgraded at 6 h (pyroptosis), RIP3-upgraded at 1 h, MLKL-upgraded at 3 h (necroptosis). The mechanism of cell death was possible initiated by necroptosis pathway. Pyroptosis pathway was also activated. The observation that cell death from E2 was by programed necrosis and the details on the temporal molecular pathways, may have value for the recent attempt to combine electroporation mediated ablation with immunological treatment, by demonstrating that the cell death from E2 involves an inflammatory response and by providing data that could be used to design the optimal timing for the injection of immunological adjuvants.


Subject(s)
Electrolysis , Electroporation , Liver/pathology , Liver/ultrastructure , Animals , Apoptosis , Cell Death , Electrolysis/adverse effects , Electroporation/methods , Liver/physiology , Liver Regeneration , Necrosis/etiology , Necrosis/pathology , Rats, Sprague-Dawley
15.
IEEE Trans Biomed Eng ; 65(8): 1810-1819, 2018 08.
Article in English | MEDLINE | ID: mdl-29989932

ABSTRACT

For irreversible-electroporation (IRE)-based therapies, the underlying electric field distribution in the target tissue is influenced by the electroporation-induced conductivity changes and is important for predicting the treatment zone. OBJECTIVE: In this study, we characterized the liver tissue conductivity changes during high-frequency irreversible electroporation (H-FIRE) treatments of widths 5 and 10 µs and proposed a method for predicting the ablation zones. METHODS: To achieve this, we created a finite-element model of the tissue treated with H-FIRE and IRE pulses based on experiments conducted in an in-vivo rabbit liver study. We performed a parametric sweep on a Heaviside function that captured the tissue conductivity versus electric field behavior to yield a model current close to the experimental current during the first burst/pulse. A temperature module was added to account for the current increase in subsequent bursts/pulses. The evolution of the electric field at the end of the treatment was overlaid on the experimental ablation zones determined from hematoxylin and eosin staining to find the field thresholds of ablation. RESULTS: Dynamic conductivity curves that provided a statistically significant relation between the model and experimental results were determined for H-FIRE. In addition, the field thresholds of ablation were obtained for the tested H-FIRE parameters. CONCLUSION: The proposed numerical model can simulate the electroporation process during H-FIRE. SIGNIFICANCE: The treatment planning method developed in this study can be translated to H-FIRE treatments of different widths and for different tissue types.


Subject(s)
Electrochemotherapy/methods , Models, Biological , Signal Processing, Computer-Assisted , Animals , Electric Conductivity , Finite Element Analysis , Liver/physiology , Rabbits
16.
PLoS One ; 13(5): e0197167, 2018.
Article in English | MEDLINE | ID: mdl-29795594

ABSTRACT

Traditionally, microsecond pulsed electric field was widely used in cell electrofusion technology. However, it was difficult to fuse the cells with different sizes. Because the effect of electroporation based on microsecond pulses was greatly influenced by cell sizes. It had been reported that the differences between cell sizes can be ignored when cells were exposed to nanosecond pulses. However, pores induced by those short nanosecond pulses tended to be very small (0.9 nm) and the pores were more easy to recover. In this work, a finite element method was used to simulate the distribution, radius and density of the pores. The innovative idea of "cell electrofusion based on nanosecond/microsecond pulses" was proposed in order to combine the advantages of nanosecond pulses and microsecond pulses. The model consisted of two contact cells with different sizes. Three kinds of pulsed electric fields were made up of two 100-ns, 10-kV/cm pulses; two 10-µs, 1-kV/cm pulses; and a sequence of a 100-ns, 10-kV/cm pulse, followed by a 10-µs, 1-kV/cm pulse. Some obvious advantageous can be found when nanosecond/microsecond pulses were considered. The pore radius was large enough (70nm) and density was high (5×1013m-2) in the cell junction area. Moreover, pores in the non-contact area of the cell membrane were small (1-10 nm) and sparse (109-1012m-2). Areas where the transmembrane voltage was higher than 1V were only concentrated in the cell junction. The transmembrane voltage of other areas were at most 0.6V when we tested the rest of the cell membrane. Cell fusion efficiency can be improved remarkably because electroporation was concentrated in the cell contact area.


Subject(s)
Cell Membrane/chemistry , Electric Conductivity , Electroporation/methods , Models, Biological , Animals , Antibodies, Monoclonal/biosynthesis , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Fusion , Cell Size , Computer Simulation , Mice , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Tumor Cells, Cultured
17.
Biochem Biophys Res Commun ; 500(3): 665-670, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29678581

ABSTRACT

Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon in which certain electric fields delivered across the cell membrane in tissue, cause cell death, without affecting the extracellular matrix. "Minimally invasive regenerative surgery" is a new medical modality for treatment of end-stage organ or tissue failure in which exogenous cells are implanted in a decellularized niche in tissue, formed by the delivery of NTIRE electric fields across a targeted volume of tissue. We anticipate that the success of the procedure will depend on the time of implantation relative to the application of NTIRE. This study was performed to elucidate the histological and molecular events that occur within 24 h after NTIRE, in the context of optimal criteria for the time of implantation. To this end, we examined the histology of NTIRE treated rat liver with H&E, Masson trichrome and TUNEL staining. Western blot was used to examine pro and cleaved caspase-3 (marker for apoptosis), pro and cleaved caspase-1 and gasdermin D (markers for pyroptosis), and RIP3 and MLKL (markers for necroptosis). The key findings are that, complete hepatocytes disintegration within an intact extracellular matrix is seen at 6 h and, new hepatocytes are seen in the treated region at 24 h, after NTIRE. There is no evidence of apoptotic cell death from NTIRE, contrary to commonly made claims in the NTIRE literature. However, molecular pathways of pyroptosis and necroptosis, programed necrosis associated with inflammation, are activated at 6 h after NTIRE and are not evident at 24 h after NTIRE. These are fundamental new findings of basic value to the field of NTIRE in all its applications. Taken together the results suggest the hypothesis that an optimal time for implantation is about 24 h after NTIRE. Future studies in which exogenous cells are implanted at different times after NTIRE are required to examine this hypothesis.


Subject(s)
Electroporation/methods , Liver/cytology , Liver/metabolism , Temperature , Animals , Caspases/metabolism , Collagen/metabolism , In Situ Nick-End Labeling , Rats, Sprague-Dawley
18.
Sci Rep ; 7(1): 15123, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123231

ABSTRACT

Irreversible electroporation (IRE) uses ~100 µs pulsed electric fields to disrupt cell membranes for solid tumor ablation. Although IRE has achieved exciting preliminary clinical results, implementing IRE could be challenging because of volumetric limitations at the ablation region. Combining short high-voltage (SHV: 1600V, 2 µs, 1 Hz, 20 pulses) pulses with long low-voltage (LLV: 240-480 V, 100 µs, 1 Hz, 60-80 pulses) pulses induces a synergistic effect that enhances IRE efficacy. Here, cell cytotoxicity and tissue ablation were investigated. The results show that combining SHV pulses with LLV pulses induced SKOV3 cell death more effectively, and compared to either SHV pulses or LLV pulses applied alone, the combination significantly enhanced the ablation region. Particularly, prolonging the lag time (100 s) between SHV and LLV pulses further reduced cell viability and enhanced the ablation area. However, the sequence of SHV and LLV pulses was important, and the LLV + SHV combination was not as effective as the SHV + LLV combination. We offer a hypothesis to explain the synergistic effect behind enhanced cell cytotoxicity and enlarged ablation area. This work shows that combining SHV pulses with LLV pulses could be used as a focal therapy and merits investigation in larger pre-clinical models and microscopic mechanisms.


Subject(s)
Ablation Techniques/methods , Carcinoma/therapy , Electroporation/methods , Ovarian Neoplasms/therapy , Animals , Cell Line, Tumor , Cell Survival , Female , Humans , Mice , Models, Theoretical
19.
IEEE Trans Biomed Eng ; 64(12): 2924-2937, 2017 12.
Article in English | MEDLINE | ID: mdl-28391185

ABSTRACT

OBJECTIVE: To minimize the effect of muscle contractions during irreversible electroporation (IRE), this paper attempts to research the ablation effect and muscle contractions by applying high-frequency IRE (H-FIRE) ablation to liver tissue in vivo. METHODS: An insulated needle electrode was produced by painting an insulating coating on the outer surface of the needle electrode tip. A series of experiments were conducted using insulated needle electrodes and traditional needle electrodes to apply H-FIRE pulses and traditional monopolar IRE pulses to rabbit liver tissues. The finite element model of the rabbit liver tissue was established to determine the lethal thresholds of H-FIRE in liver tissues. Muscle contractions were measured by an accelerometer. RESULTS: With increased constitutive pulse width and pulse voltage, the ablation area and muscle contraction strength are also increased, which can be used to optimize the ablation parameters of H-FIRE. Under the same pulse parameters, the ablation areas are similar for the two types of electrodes, and the ablation region has a clear boundary. H-FIRE and insulated needle electrodes can mitigate the extent of muscle contractions. The lethal thresholds of H-FIRE in rabbit liver tissues were determined. CONCLUSION: This paper describes the relationships between the ablation area, muscle contractions, and pulse parameters; the designed insulated needle electrodes can be used in IRE for reducing muscle contraction. SIGNIFICANCE: The study provides guidance for treatment planning and reducing muscle contractions in the clinical application of H-FIRE.


Subject(s)
Electroporation , Muscle Contraction/physiology , Needles , Animals , Electrodes , Electroporation/instrumentation , Electroporation/methods , Female , Laser Therapy/instrumentation , Laser Therapy/methods , Liver/surgery , Models, Biological , Rabbits
20.
PLoS One ; 12(3): e0173181, 2017.
Article in English | MEDLINE | ID: mdl-28253331

ABSTRACT

Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.


Subject(s)
Electroporation/methods , Cell Membrane Permeability , Solanum tuberosum
SELECTION OF CITATIONS
SEARCH DETAIL
...