Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Signal Behav ; 18(1): 2216001, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37302802

ABSTRACT

The effects of exogenous γ-aminobutyric acid (GABA) and melatonin (MT) on tomato seed germination and shoot growth exposed to cadmium stress were investigated. On the one hand, treatment with MT (10-200 µM) or GABA (10-200 µM) alone could significantly relieve cadmium stress in tomato seedlings, which is reflected in increasing the germination rate, vigor index, fresh weight, dry weight and radicle lengths of tomato seeds, as well as the soluble content compared to the absence of exogenous treatment, and the alleviating effect reached the peak in the 200 µM GABA or 150 µM MT alone. On the other hand, exogenous MT and GABA showed synergistic effects on the germination of tomato seed under cadmium stress. Moreover, the application of 100 µM GABA combined with 100 µM MT markedly decreased the contents of Cd and MDA by upregulating the activities of antioxidant enzymes, thereby alleviating the toxic effect of cadmium stress on tomato seeds. Collectively, the combinational strategy showed significant positive effects on seed germination and cadmium stress resistance in tomato.


Subject(s)
Melatonin , Solanum lycopersicum , Germination , Melatonin/pharmacology , Cadmium/toxicity , Seeds , Seedlings , Antioxidants/pharmacology , gamma-Aminobutyric Acid/pharmacology
2.
Physiol Plant ; 175(3): e13914, 2023.
Article in English | MEDLINE | ID: mdl-37072650

ABSTRACT

Hydrangea (Hydrangea arborescens var. "Annabelle") flowers are composed of sweet aroma sepals rather than true petals and can change color. Floral volatiles plays important roles in plants, such as attracting pollinators, defending against herbivores, and signaling. However, the biosynthesis and regulatory mechanisms underlying fragrance formation in H. arborescens during flower development remain unknown. In this study, a combination of metabolite profiling and RNA sequencing (RNA-seq) was employed to identify genes associated with floral scent biosynthesis mechanisms in "Annabelle" flowers at three developmental stages (F1, F2, and F3). The floral volatile data revealed that the "Annabelle" volatile profile includes a total of 33 volatile organic compounds (VOCs), and VOCs were abundant during the F2 stage of flower development, followed by the F1 and F3 stages, respectively. Terpenoids and benzenoids/phenylpropanoids were abundant during the F2 and F1 stages, with the latter being the most abundant, whereas fatty acid derivatives and other compounds were found in large amounts during the F3 stage. According to ultra-performance liquid chromatography-tandem mass spectrometer analysis, benzene and substituted derivatives, carboxylic acids and derivatives, and fatty acyls play a significant role in the floral metabolite profile. The transcriptome data revealed a total of 17,461 differentially expressed genes (DEGs), with 7585, 12,795, and 9044 DEGs discovered between the F2 and F1, F3 and F1, and F2 and F3 stages, respectively. Several terpenoids and benzenoids/phenylpropanoids biosynthesis-related DEGs were identified, and GRAS/bHLH/MYB/AP2/WRKY were more abundant among transcription factors. Finally, DEGs interlinked with VOCs compounds were determined using Cytoscape and k-means analysis. Our results pave the way for the discovery of new genes, critical data for future genetic studies, and a platform for the metabolic engineering of genes involved in the production of Hydrangea's signature floral fragrance.


Subject(s)
Hydrangea , Hydrangea/genetics , Hydrangea/metabolism , Odorants , Gene Expression Profiling/methods , Terpenes/metabolism , Transcriptome , Metabolome , Flowers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...