Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 19747, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34611234

ABSTRACT

The objective of the present exploration is to examine the nanoliquid flow amid two horizontal infinite plates. The lower plate is stretchable and permeable. The uniqueness of the flow model is assimilated with the Hall effect, variable thermal conductivity, thermal radiation, and irregular heat source/sink. Transmission of mass is enhanced with the impression of chemical reaction incorporated with activation energy. Appropriate similarity transformation is applied to transform the formulated problem into ordinary differential equations (ODEs). The numerical solution is obtained by employing MATLAB software function bvp4c. The dimensionless parameters are graphically illustrated and discussed for the involved profiles. An increasing behavior is exhibited by the temperature field on escalating the Brownian motion, thermophoresis parameter, variable thermal conductivity, and radiation parameter. For larger values of Schmidt number and chemical reaction parameter, the concentration profile deteriorates, while a reverse trend is seen for activation energy. The rate of heat transfer is strengthened at the lower wall on amplifying the Prandtl number. A comparative analysis of the present investigation with already published work is also added to substantiate the envisioned problem.

2.
Sci Rep ; 11(1): 15859, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349210

ABSTRACT

The non-Newtonian fluids possess captivating heat transfer applications in comparison to the Newtonian fluids. Here, a new type of non-Newtonian fluid named Reiner-Rivlin nanofluid flow over a rough rotating disk with Cattaneo-Christov (C-C) heat flux is studied in a permeable media. The stability of the nanoparticles is augmented by adding the gyrotactic microorganisms in the nanofluid. The concept of the envisaged model is improved by considering the influences of Arrhenius activation energy, chemical reaction, slip, and convective conditions at the boundary of the surface. The entropy generation is evaluated by employing the second law of thermodynamics. The succor of the Shooting scheme combined with the bvp4c MATLAB software is adapted for the solution of extremely nonlinear system of equations. The noteworthy impacts of the evolving parameters versus engaged fields are inspected through graphical illustrations. The outcomes show that for a strong material parameter of Reiner-Rivlin, temperature, and concentration profiles are enhanced. The behavior of Skin friction coefficients, local Nusselt number, Sherwood number, and local density number of motile microorganisms against the different estimates of emerging parameters are represented in tabular form. The authenticity of the intended model is tested by comparing the presented results in limiting form to an already published paper. A proper correlation between the two results is attained.

3.
Results Phys ; 25: 104253, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34002125

ABSTRACT

This current work studies a new mathematical model for SARS-CoV-2. We show how immigration, protection, death rate, exposure, cure rate and interaction of infected people with healthy people affect the population. Our model is SIR model, which has three classes including susceptible, infected and recovered respectively. Here, we find the basic reproduction number and local stability through jacobean matrix. Lyapunvo function theory is used to calculate the global stability for the problem under investigation. Also a nonstandard finite difference sachem (NSFDS) is used to simulate the results.

4.
Sci Rep ; 11(1): 8948, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903649

ABSTRACT

The article explores the effect of Hall current, thermal radiation, and magnetic field on hybrid nanofluid flow over the surface of a spinning disk. The motive of the present effort is to upgrade the heat transmission rate for engineering and industrial purposes. The hybrid nanofluids as compared to the conventional fluids have higher thermal properties. Therefore, in the present article, a special class of nanoparticles known as carbon nanotubes (CNTs) and iron ferrite nanoparticles are used in the base fluid. The system of modeled equations is depleted into dimensionless differential equations through similarity transformation. The transform equations are further solved through the Parametric Continuation method (PCM). For the parametric study, the physical parameters impact on velocity, energy, mass transmission, and motile microorganism's concentration profiles have been sketched. The obtained results are compared with the existing literature, which shows the best settlement. It concluded that the heat transmission rate reduces for Hall current and rises with radiative parameter. The results perceived that the addition of CNTs in carrier fluid is more efficacious than any other types of nanoparticles, due to its C-C bond. CNTs nanofluid can be more functionalized for the desired achievement, which can be utilized for a variety of applications by functionalization of non-covalent and covalent modification.

SELECTION OF CITATIONS
SEARCH DETAIL
...