Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122689, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37043835

ABSTRACT

The study aimed to provide new information of Rosa roxburghii Tratt (RRT) for the production of functional foods and distinguish the geographical origins of RRT. The nutritional components of RRT from three regions in China, such as vitamin C, polysaccharides, total flavonoids, and total phenolics, and their antioxidant activities were analyzed by one-way ANOVA. The results of Fourier transform infrared spectroscopy (FT-IR) combined with principal component analysis (PCA), stepwise linear discriminant analysis (SLDA), k-nearest neighbor (k-NN), and support vector machine (SVM) were used to establish discriminant models to identify the geographical origin of RRT. The results of one-way ANOVA showed that the contents of some nutrients and antioxidant activity were significantly different among RRT from different regions and their FT-IR spectra also showed significant differences. The characteristic fingerprint bands of FT-IR (1679-1618 cm-1and 1520-900 cm-1) closely related to the geographical origins of RRT were screened out. Based on SLDA, a discriminant model was established to realize the classification and identification of RRT from different regions and the correct discrimination rate of the testing sample set obtained with the established model reached 100 %. Geographical factors caused the obvious differences in nutritional components and antioxidant activity in RRT. The characteristic fingerprint bands of RRT obtained with FT-IR could be used to identify the geographical origins of RRT more quickly and accurately.


Subject(s)
Rosa , Spectroscopy, Fourier Transform Infrared/methods , Rosa/chemistry , Antioxidants , Spectrophotometry, Infrared , Discriminant Analysis
2.
Appl Microbiol Biotechnol ; 104(9): 3897-3907, 2020 May.
Article in English | MEDLINE | ID: mdl-32130469

ABSTRACT

Vanillin is a popular flavoring compound and an important food additive. Owing to the consumer preference for inexpensive natural aroma flavors, vanillin production through a biotechnological pathway has become of great interest and commercial value in recent years. In this study, an enzymatic synthetic system for vanillin using a coenzyme-independent decarboxylase (FDC) and oxygenase (CSO2) cascade was reconstituted and optimized. This system produces a slightly higher production yield (40.20%) than the largest yield reported for immobilized FDC and CSO2 (35.00%) with ferulic acid as a substrate. It was previously reported that the low catalytic activity and thermal instability of CSO2 restrict the overall productivity of vanillin. In present study, site-directed mutagenesis was applied to rate-limiting oxygenase CSO2 to generate positive mutants. The production yields of mutants A49P (58.44%) and Q390A (65.29%) were 1.45- and 1.62-fold that of CSO2 wild type, respectively. The potential mechanism for enhanced vanillin production using A49P involved increased thermostability and catalytic efficiency, while that using Q390A was probably associated with a better thermostable performance and increased catalytic efficiency resulting from a larger entrance channel.


Subject(s)
Benzaldehydes/metabolism , Metabolic Engineering , Mutagenesis, Site-Directed , Oxygenases/genetics , Oxygenases/metabolism , Bacillus pumilus/enzymology , Bacillus pumilus/genetics , Catalysis , Caulobacter/enzymology , Caulobacter/genetics , Coenzymes , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Protein Biosynthesis
3.
Acta Pharm Sin B ; 9(3): 496-504, 2019 May.
Article in English | MEDLINE | ID: mdl-31193801

ABSTRACT

As d-amino acids play important roles in the physiological metabolism of bacteria, combination of d-amino acids with antibiotics may provide synergistic antibacterial activity. The aim of the study was to evaluate in vitro and in vivo activity of d-serine alone and in combination with ß-lactams against methicillin-resistant Staphylococcus aureus (MRSA) strains, and to explore the possible sensitization mechanisms. The activity of d-serine, ß-lactams alone and in combinations was evaluated both in vitro by standard MICs, time-kill curves and checkerboard assays, and in vivo by murine systemic infection model as well as neutropenic thigh infection model. An in vitro synergistic effect was demonstrated with the combination of d-serine and ß-lactams against MRSA standard and clinical strains. Importantly, the combinations enhanced the therapeutic efficacy in the animal models as compared to ß-lactam alone groups. Initial mechanism study suggested possible revision of d-alanine-d-alanine residue to d-alanine-d-serine in peptidoglycan by adding of d-alanine in the medium, which may cause decreased affinity to PBPs during transpeptidation. In conclusion, d-serine had synergistic activity in combination with ß-lactams against MRSA strains both in vitro and in vivo. Considering the relatively good safety of d-serine alone or in combination with ß-lactams, d-serine is worth following up as new anti-MRSA infection strategies.

4.
Front Plant Sci ; 10: 213, 2019.
Article in English | MEDLINE | ID: mdl-30873196

ABSTRACT

Varieties of Citrus are commercially important fruits that are cultivated worldwide and are valued for being highly nutritious and having an appealing flavor. Lignification of citrus fruit juice sacs is a serious physiological disorder that occurs during postharvest storage, for which the underlying transcriptional regulatory mechanisms remain unclear. In this study, we identified and isolated a candidate MYB transcription factor, CsMYB85, that is involved in the regulation of lignin biosynthesis in Citrus sinensis, which has homologs in Arabidopsis and other plants. We found that during juice sac lignification, CsMYB85 expression levels increase significantly, and therefore, suspected that this gene may control lignin biosynthesis during the lignification process. Our results indicated that CsMYB85 binds the CsMYB330 promoter, regulates its expression, and interacts with CsMYB308 in transgenic yeast and tobacco. A transient expression assay indicated that Cs4CL1 expression levels and lignin content significantly increased in fruit juice sacs overexpressing CsMYB85. At4CL1 expression levels and lignin content were also significantly increased in Arabidopsis overexpressing CsMYB85. We accordingly present convincing evidence for the participation of the CsMYB85 transcription factor in fruit juice sac lignification, and thereby provide new insights into the transcriptional regulation of this process in citrus fruits.

5.
Acta Pharm Sin B ; 4(4): 295-300, 2014 Aug.
Article in English | MEDLINE | ID: mdl-26579398

ABSTRACT

The objective of this study was to investigate the genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii clinical isolates from Beijing, China. 173 A. baumannii clinical isolates from hospitals in Beijing from 2006 to 2009 were first subjected to high level aminoglycoside resistance (HLAR, MIC to gentamicin and amikacin>512 µg/mL) phenotype selection by broth microdilution method. The strains were then subjected to genetic basis analysis by PCR detection of the aminoglycoside modifying enzyme genes (aac(3)-I, aac(3)-IIc, aac(6')-Ib, aac(6')-II, aph(4)-Ia, aph(3')-I, aph(3')-IIb, aph(3')-IIIa, aph(3')-VIa, aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Id, ant(2″)-Ia, ant(3″)-I and ant(4')-Ia) and the 16S rRNA methylase genes (armA, rmtB and rmtC). Correlation analysis between the presence of aminoglycoside resistance gene and HLAR phenotype were performed by SPSS. Totally 102 (58.96%) HLAR isolates were selected. The HLAR rates for year 2006, 2007, 2008 and 2009 were 52.63%, 65.22%, 51.11% and 70.83%, respectively. Five modifying enzyme genes (aac(3)-I, detection rate of 65.69%; aac(6')-Ib, detection rate of 45.10%; aph(3')-I, detection rate of 47.06%; aph(3')-IIb, detection rate of 0.98%; ant(3″)-I, detection rate of 95.10%) and one methylase gene (armA, detection rate of 98.04%) were detected in the 102 A. baumannii with aac(3)-I+aac(6')-Ib+ant(3″)-I+armA (detection rate of 25.49%), aac(3)-I+aph(3')-I+ant(3″)-I+armA (detection rate of 21.57%) and ant(3″)-I+armA (detection rate of 12.75%) being the most prevalent gene profiles. The values of chi-square tests showed correlation of armA, ant(3″)-I, aac(3)-I, aph(3')-I and aac(6')-Ib with HLAR. armA had significant correlation (contingency coefficient 0.685) and good contingency with HLAR (kappa 0.940). The high rates of HLAR may cause a serious problem for combination therapy of aminoglycoside with ß-lactams against A. baumannii infections. As armA was reported to be able to cause high level aminoglycoside resistance to most of the clinical important aminoglycosides (gentamicin, amikacin, tobramycin, etc), the function of aminoglycoside modifying enzyme gene(s) in A. baumannii carrying armA deserves further investigation.

6.
Mol Biotechnol ; 50(2): 137-44, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21688038

ABSTRACT

Transgene expression for the mammary gland bioreactor aimed at producing recombinant proteins requires optimized expression vector construction. Previously we presented a hybrid gene locus strategy, which was originally tested with human lactoferrin (hLF) as target transgene, and an extremely high-level expression of rhLF ever been achieved as to 29.8 g/l in mice milk. Here to demonstrate the broad application of this strategy, another 38.4 kb mWAP-htPA hybrid gene locus was constructed, in which the 3-kb genomic coding sequence in the 24-kb mouse whey acidic protein (mWAP) gene locus was substituted by the 17.4-kb genomic coding sequence of human tissue plasminogen activator (htPA), exactly from the start codon to the end codon. Corresponding five transgenic mice lines were generated and the highest expression level of rhtPA in the milk attained as to 3.3 g/l. Our strategy will provide a universal way for the large-scale production of pharmaceutical proteins in the mammary gland of transgenic animals.


Subject(s)
Mice, Transgenic/genetics , Milk/metabolism , Tissue Plasminogen Activator/genetics , Animals , Female , Gene Expression Regulation , Genetic Engineering/methods , Humans , Mammary Glands, Animal/metabolism , Mice , Milk Proteins/genetics , Tissue Plasminogen Activator/metabolism , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...