Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 234: 115555, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37473506

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a clinical syndrome characterized by hepatocyte steatosis and adipose accumulation with the main lesion in the hepatic lobule, but without a history of excessive alcohol consumption. NAFLD ranges from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), and may further accumulate fibrosis leading to cirrhosis. Many studies have found that ginseng can treat NAFLD. (20 R)-Panaxadiol (PD) is a panax ginseng diol type compound, has been proved that can treat the obesity. This study wants to investigate the effect of PD on non-alcoholic liver disease. We used 20 ob/ob mice and 10 C57BL/6 J mice. C57BL/6 J mice as CONTROL group, ob/ob mice were divided into model group and PD group. In PD group, ob/ob mice were treated with PD for eight weeks(10 mg/kg, the CON and OB group was given the same amount of sodium carboxymethyl cellulose), detected the weight, food intake and serum index, observed the HE staining of liver and intestine, performed the 16 S rRNA and untargeted metabolomics analysis used mice feces, and verify the results by detect the expression of TNF-α, MDA and SOD. In vivo results, PD can improve abnormal glucose and lipid metabolism and liver function. In 16 S rRNA result, we found beneficial bacteria Muribaculaceae and Lactobacillus increased; in untargeted metabolomics analysis, inflammatory metabolites prostaglandin (PG) and lipopolysaccharide (LPS) decreased, antioxidant metabolites FAD and lipoic acid increased. Then, we proceeded the association analysis of gut microbiota and metabolites, the result showed gut microbiota have strongly associated with anti-inflammatory and antioxidant metabolites. In addition, PD improves intestinal wall integrity. Meanwhile, the expression of TNF-α、MDA and SOD were detected, it was verified that PD has the effect of antioxidant and anti-inflammation. Our study showed that PD, as an active ingredient of ginseng, can play an anti-inflammatory and antioxidant role by improving intestinal metabolites, thereby preventing and treating non-alcoholic fatty liver disease to a certain extent.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Antioxidants/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Liver/metabolism , Obesity/drug therapy , Superoxide Dismutase , Metabolomics , Feces
2.
Front Pharmacol ; 14: 1071516, 2023.
Article in English | MEDLINE | ID: mdl-36909162

ABSTRACT

Introduction: Obesity is an important cause of a range of metabolic diseases. However, the complex mechanisms of obesity and its related diseases make some weight loss methods ineffective or have safety issues. Ginseng, a specialty of Jilin Province in China with both edible and medicinal value, contains mainly ginsenosides and other components. In order to study the anti-obesity effect of ginseng, network pharmacology was used to predict and screen the active ingredients, action targets and signaling pathways of ginseng. We found (20R)-panaxadiol (PD) is a more desirable active ingredient due to its high drug-like properties and high bioavailability. Moreover, it is closely related to cAMP pathway which is more important in metabolism regulation. The corresponding pharmacodynamic targets of PD include ADRB2 (the gene encoding the ß2-adrenoceptor receptor). Our study aimed to investigate whether Panaxadiol can promote white adipocyte beigeing and increase thermogenesis through modulating the ß2/cAMP pathway to exert anti-obesity effects. Methods: In vivo, we established high-fat feeding obesity model, genotypically obese mice (ob/ob) model, and administered PD (10 mg/kg). PD treatment in ob/ob mice along with ß2 receptor inhibitor ICI118551. In vitro, differentiated mature 3T3-L1 cells were given palmitate (PA) to induce hypertrophy model along with PD (20 µM). Results: The results of this study demonstrated that PD significantly reduced body weight, improved glucose tolerance and lipid levels in high-fat-induced obese mice and ob/ob mice, and also reduced lipid droplet size in PA-treated hypertrophic adipocytes in vitro. Molecular biology assays confirmed that cAMP response element binding protein (CREB) phosphorylation was increased after PD administration, and the expression of thermogenesis-related proteins UCP1, PRDM16 and mitochondrial biosynthesis-related proteins PGC-1α, TFAM and NRF1 were increased. Molecular docking results showed a low binding energy between ß2 receptors and PD, indicating an affinity between the ß2 receptor and PD. In addition, the ß2 receptor inhibition, reversed the anti-obesity effect of PD on the body weight, lipid droplets, the expression of thermogenesis-related proteins and CREB phosphorylation in ob/ob mice. Discussion: These results suggest that PD may promote the expression of thermogenic proteins through phosphorylation of CREB via ß2 receptor activation, and thus exert anti-obesity effects.

3.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1464-1475, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36269134

ABSTRACT

The aberrant changes of fussion/fission-related proteins can trigger mitochondrial dynamics imbalance, which cause mitochondrial dysfunctions and result insulin resistance (IR). However, the relationship between the inner mitochondrial membrane fusion protein optic atrophy 1 (Opa1) and hepatic IR as well as the specific molecular mechanisms of signal transduction has not been fully elucidated. In this study, we explore whether abnormalities in the Opa1 cause hepatic IR and whether berberine (BBR) can prevent hepatic IR through the SIRT1/Opa1 signalling pathway. High-fat diet (HFD)-fed mice and db/db mice are used as animal models to study hepatic IR in vivo. IR, morphological changes, and mitochondrial injury of the liver are examined to explore the effects of BBR. SIRT1/Opa1 protein expression is determined to confirm whether the signalling pathway is damaged in the model animals and is involved in BBR treatment-mediated mitigation of hepatic IR. A palmitate (PA)-induced hepatocyte IR model is established in HepG2 cells in vitro. Opa1 silencing and SIRT1 overexpression are induced to verify whether Opa1 deficiency causes hepatocyte IR and whether SIRT1 improves this dysfunction. BBR treatment and SIRT1 silencing are employed to confirm that BBR can prevent hepatic IR by activating the SIRT1/Opa1 signalling pathway. Western blot analysis and JC-1 fluorescent staining results show that Opa1 deficiency causes an imbalance in mitochondrial fusion/fission and impairs insulin signalling in HepG2 cells. SIRT1 and BBR overexpression ameliorates PA-induced IR, increases Opa1, and improves mitochondrial function. SIRT1 silencing partly reverses the effects of BBR on HepG2 cells. SIRT1 and Opa1 expressions are downregulated in the animal models. BBR attenuates hepatic IR and enhances SIRT1/Opa1 signalling in db/db mice. In summary, Opa1 silencing-mediated mitochondrial fusion/fission imbalance could lead to hepatocyte IR. BBR may improve hepatic IR by regulating the SIRT1/Opa1 signalling pathway, and thus, it may be used to treat type-2 diabetes.


Subject(s)
Berberine , Insulin Resistance , Mice , Animals , Berberine/pharmacology , Berberine/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Liver/metabolism , Signal Transduction , Mitochondria/metabolism
4.
Molecules ; 27(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458705

ABSTRACT

Obesity is an important cause of diseases such as type 2 diabetes, non-alcoholic fatty liver and atherosclerosis. The use of ingredients extracted from traditional Chinese medicine for weight loss is now receiving more and more attention. Ginseng has been recorded since ancient times for the treatment of diabetes. The (20R)-Panaxadiol (PD) belongs to the ginseng diol type compounds, which are moderately bioavailable and may remain in the intestinal tract for a longer period of time. This study investigated the potential positive effect of PD in ob/ob mice and evaluated its effect against obesity. The ob/ob mice were administered PD for ten weeks. Our study showed that PD could improve obesity, glucose tolerance disorder, as well as gut dysbiosis. Panaxadiol decreased ob/ob mice's Firmicutes/Bacteroidetes (F/B). Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that PD changed the composition of the gut microbiota in ob/ob mice and modulated specific bacteria such as lactobacillus, prevotellace and so on. Moreover, PD improved the intestinal wall integrity. In conclusion, our results suggest that (20R)-Panaxadiol, as an active ingredient of the traditional Chinese medicinal herb ginseng, may improve obesity to some extent via improving gut microbiota.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Panax , Animals , Diabetes Mellitus, Type 2/complications , Diet, High-Fat , Ginsenosides , Mice , Mice, Inbred C57BL , Obesity/etiology , RNA, Ribosomal, 16S/genetics
5.
Molecules ; 26(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34885759

ABSTRACT

Osteoarthritis is a common multifactorial chronic disease that occurs in articular cartilage, subchondral bone, and periarticular tissue. The pathogenesis of OA is still unclear. To investigate the differences in serum metabolites between OA and the control group, liquid chromatography/mass spectrometry (LC/MS)-based metabolomics was used. To reveal the pathogenesis of OA, 12 SD male rats were randomly divided into control and OA groups using collagenase to induce OA for modeling, and serum was collected 7 days after modeling for testing. The OA group was distinguished from the control group by principal component analysis and orthogonal partial least squares-discriminant analysis, and six biomarkers were finally identified. These biomarkers were metabolized through tryptophan metabolism, glutamate metabolism, nitrogen metabolism, spermidine metabolism, and fatty acid metabolism pathways. The study identified metabolites that may be altered in OA, suggesting a role in OA through relevant metabolic pathways. Metabolomics, as an important tool for studying disease mechanisms, provides useful information for studying the metabolic mechanisms of OA.


Subject(s)
Biomarkers/blood , Cartilage, Articular/metabolism , Metabolomics , Osteoarthritis/blood , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Chromatography, Liquid , Collagenases/toxicity , Disease Models, Animal , Fatty Acids/blood , Glutamic Acid/blood , Humans , Mass Spectrometry , Metabolic Networks and Pathways , Metabolome/genetics , Nitrogen/blood , Osteoarthritis/chemically induced , Osteoarthritis/genetics , Osteoarthritis/metabolism , Rats , Spermidine/blood , Tryptophan/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...