Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(8): 085102, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37683175

ABSTRACT

Alfvénic modes in the current quench (CQ) stage of the tokamak disruption have been observed in experiments. In DIII-D the excitation of these modes is associated with the presence of high-energy runaway electrons (REs), and a strong mode excitation is often associated with the failure of RE plateau formation. In this work we present results of self-consistent kinetic-MHD simulations of RE-driven compressional Alfvén eigenmodes (CAEs) in DIII-D disruption scenarios, providing an explanation of the CQ modes. Simulation results reveal that high energy trapped REs can have resonance with the Alfvén mode through their toroidal precession motion, and the resonance frequency is proportional to the energy of REs. The mode frequencies and their relationship with the RE energy are consistent with experimental observations. The perturbed magnetic fields from the modes can lead to spatial diffusion of REs including the nonresonant passing ones, thus providing the theoretical basis for a potential approach for RE mitigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...