Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 948: 174671, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004368

ABSTRACT

The widespread and excessive use of pesticides in modern agricultural practices has caused pesticide contamination of the environment, animals, and humans, with confirmed serious health consequences. This study aimed to identify the 20 most critical substances based on an analysis of detection frequency (DF) and median concentrations (MC) across environmental and biological matrices. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina, each encompassing conventional and organic farming systems. We analysed 209 active substances in a total of 4609 samples. All substances ranked among the 20 most critical were detected in silicon wristbands worn by humans and animals and indoor dust from both farming systems. Five of them were detected in all environmental matrices. Overall, higher values of DF and MC, including in the blood plasma of animals and humans, were recorded in samples of conventional compared to organic farms. The differences between farming systems were greater in the environmental samples and less in animal and human samples. Ten substances were detected in animal blood plasma from conventional farms and eight in animal blood plasma from organic farms. Two of those, detected in both farming systems, are classified as hazardous for mammals (acute). Five substances detected in animal blood plasma from organic farms and seven detected in animal blood plasma from conventional farms are classified as hazardous for mammals (dietary). Three substances detected in human blood plasma are classified as carcinogens. Seven of the substances detected in human blood plasma are classified as endocrine disruptors. Six substances, of which five were detected in human blood plasma, are hazardous for reproduction/development. Efforts are needed to elucidate the unknown effects of mixtures, and it is crucial that such research also considers biocides and banned substances, which constitute a baseline of contamination that adds to the effect of substances used in agriculture.

2.
Sci Total Environ ; 927: 172175, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575018

ABSTRACT

The use of plastic mulch films in agriculture leads to the inevitable accumulation of plastic debris in soils. Here, we explored the potential of earthworm gut-inhabiting bacterial strains (Mycobacterium vanbaalenii (MV), Rhodococcus jostii (RJ), Streptomyces fulvissimus (SF), Bacillus simplex (BS), and Sporosarcina globispora (SG) to degrade plastic films (⌀ = 15 mm) made from commonly used polymers: low-density polyethylene film (LDPE-f), polylactic acid (PLA-f), polybutylene adipate terephthalate film (PBAT-f), and a commercial biodegradable mulch film, Bionov-B® (composed of Mater-Bi, a feedstock with PBAT, PLA and other chemical compounds). A 180-day experiment was conducted at room temperature (x̄ =19.4 °C) for different strain-plastic combinations under a low carbon media (0.1× tryptic soy broth). Results showed that the tested strain-plastic combinations did not facilitate the degradation of LDPE-f (treated with RJ and SF), PBAT-f (treated with BS and SG), and Bionov-B (treated with BS, MV, and SG). However, incubating PLA-f with SF triggered a reduction in the molecular weights and an increase in crystallinity. Therefore, we used PLA-f as model plastic to study the influence of temperature ("room temperature" & "30 °C"), carbon source ("carbon-free" & "low carbon supply"), and strain interactions ("single strains" & "strain mixtures") on PLA degradation. SF and SF + RJ treatments significantly fostered PLA degradation under 30 °C in a low-carbon media. PLA-f did not show any degradation in carbon-free media treatments. The competition between different strains in the same system likely hindered the performance of PLA-degrading strains. A positive correlation between the final pH of culture media and PLA-f weight loss was observed, which might reflect the pH-dependent hydrolysis mechanism of PLA. Our results situate SF and its co-culture with RJ strains as possible accelerators of PLA degradation in temperatures below PLA glass transition temperature (Tg). Further studies are needed to test the bioremediation feasibility in soils.


Subject(s)
Biodegradation, Environmental , Oligochaeta , Plastics , Animals , Soil Pollutants/metabolism , Gastrointestinal Microbiome , Bacteria/metabolism , Soil Microbiology , Polyesters
3.
Sci Total Environ ; 900: 165179, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37385505

ABSTRACT

Intensive agriculture relies on external inputs to reach high productivity and profitability. Plastic mulch, mainly in the form of Low-Density Polyethylene (LDPE), is widely used in agriculture to decrease evaporation, increase soil temperature and prevent weeds. The incomplete removal of LDPE mulch after use causes plastic contamination in agricultural soils. In conventional agriculture, the use of pesticides also leaves residues accumulating in soils. Thus, the objective of this study was to measure plastic and pesticide residues in agricultural soils and their effects on the soil microbiome. For this, we sampled soil (0-10 cm and 10-30 cm) from 18 parcels from 6 vegetable farms in SE Spain. The farms were under either organic or conventional management, where plastic mulch had been used for >25 years. We measured the macro- and micro-light density plastic debris contents, the pesticide residue levels, and a range of physiochemical properties. We also carried out DNA sequencing on the soil fungal and bacterial communities. Plastic debris (>100 µm) was found in all samples with an average number of 2 × 103 particles kg-1 and area of 60 cm2 kg-1. We found 4-10 different pesticide residues in all conventional soils, for an average of 140 µg kg-1. Overall, pesticide content was ∼100 times lower in organic farms. The soil microbiomes were farm-specific and related to different soil physicochemical parameters and contaminants. Regarding contaminants, bacterial communities responded to the total pesticide residues, the fungicide Azoxystrobin and the insecticide Chlorantraniliprole as well as the plastic area. The fungicide Boscalid was the only contaminant to influence the fungal community. The wide spread of plastic and pesticide residues in agricultural soil and their effects on soil microbial communities may impact crop production and other environmental services. More studies are required to evaluate the total costs of intensive agriculture.


Subject(s)
Fungicides, Industrial , Microbiota , Pesticide Residues , Pesticides , Soil/chemistry , Pesticide Residues/analysis , Vegetables , Polyethylene , Agriculture , Pesticides/analysis
4.
J Hazard Mater ; 447: 130765, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36640504

ABSTRACT

The accumulation of microplastics poses potential risks to soil health. Here, we did a preliminary exploration on the potential of Lumbricus terrestris (Oligochaeta) to reduce low-density polyethylene (LDPE), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT) microplastic (20-648 µm) contamination in soils. The ingestion of microplastics-contaminated soil (1% of microplastics, dw/dw) in a mesocosm system and the ingestion of pure microplastics in the Petri Dish by earthworms were studied. Results show that earthworms survived in the microplastics-contaminated soil (0% mortality in 35 days) but barely when exposed solely to microplastics (30-80% mortality in 4 days). Size-dependent ingestion of microplastics was not observed. The fragmentation of LDPE microplastics in the gizzard facilitated by soil was confirmed by the significantly increased ratio of small-sized (20-113 µm) microplastics from the bulk soil to the gut (from 8.4% to 18.8%). PLA and PBAT microplastics were fragmented by gizzard without the facilitation of soil, the ratios of small-sized (20-113 µm) PLA and PBAT microplastics in the gut were 55.5% and 108.2% higher than in respective pristine distributions. Substantial depolymerization of PLA (weight-average molar mass reduced by 17.7% with shift in molecular weight distribution) and suspected depolymerization of PBAT were observed in the worm gut, while no change in the molar mass was observed for PLA and PBAT microplastics buried in the soil for 49 days. Our results suggest that ingested microplastics could undergo fragmentation and depolymerization (for certain polymers) in the earthworm gut. Further research is needed to reveal the mechanisms of polymer depolymerization in the earthworm gut and to evaluate the feasibility of microplastic bioremediation with earthworms.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Microplastics/toxicity , Plastics , Polyethylene , Biodegradation, Environmental , Soil Pollutants/toxicity , Soil Pollutants/analysis , Soil , Polyesters
5.
Environ Pollut ; 316(Pt 1): 120513, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36374801

ABSTRACT

Although microplastic pollution jeopardizes both terrestrial and aquatic ecosystems, the movement of plastic particles through terrestrial environments is still poorly understood. Agricultural soils exposed to different managements are important sites of storage and dispersal of microplastics. This study aimed to identify the abundance, distribution, and type of microplastics present in agricultural soils, water, airborne dust, and ditch sediments. Soil health was also assessed using soil macroinvertebrate abundance and diversity. Sixteen fields were evaluated, 6 of which had been exposed to more than 5 years of compost application, 5 were exposed to at least 5 years of plastic mulch use, and 5 were not exposed to any specific management (controls) within the last 5 years. We also evaluated the spread of microplastics from the farms into nearby water bodies and airborne dust. We found 11 types of microplastics in soil, among which Light Density Polyethylene (LDPE) and Light Density Polyethylene covered with pro-oxidant additives (PAC) were the most abundant. The highest concentrations of plastics were found in soils exposed to plastic mulch management (128.7 ± 320 MPs.g-1 soil and 224.84 ± 488 MPs.g-1 soil, respectively) and the particles measured from 50 to 150 µm. Nine types of microplastics were found in water, with the highest concentrations observed in systems exposed to compost. Farms applying compost had higher LDPE and PAC concentrations in ditch sediments as compared to control and mulch systems; a significant correlation between soil polypropylene (PP) microplastics with ditch sediment microplastics (r2 0.7 p < 0.05) was found. LDPE, PAC, PE (Polyethylene), and PP were the most abundant microplastics in airborne dust. Soil invertebrates were scarce in the systems using plastic mulch. A cocktail of microplastics was found in all assessed matrices.


Subject(s)
Soil Pollutants , Water Pollutants, Chemical , Microplastics , Soil , Plastics , Polyethylene/analysis , Dust , Ecosystem , Water , Soil Pollutants/analysis , Polypropylenes/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis
6.
PLoS One ; 16(11): e0259748, 2021.
Article in English | MEDLINE | ID: mdl-34780516

ABSTRACT

Current farm systems rely on the use of Plant Protection Products (PPP) to secure high productivity and control threats to the quality of the crops. However, PPP use may have considerable impacts on human health and the environment. A study protocol is presented aiming to determine the occurrence and levels of PPP residues in plants (crops), animals (livestock), humans and other non-target species (ecosystem representatives) for exposure modelling and impact assessment. To achieve this, we designed a cross-sectional study to compare conventional and organic farm systems across Europe. Environmental and biological samples were/are being/will be collected during the 2021 growing season, at 10 case study sites in Europe covering a range of climate zones and crops. An additional study site in Argentina will inform the impact of PPP use on growing soybean which is an important European protein-source in animal feed. We will study the impact of PPP mixtures using an integrated risk assessment methodology. The fate of PPP in environmental media (soil, water and air) and in the homes of farmers will be monitored. This will be complemented by biomonitoring to estimate PPP uptake by humans and farm animals (cow, goat, sheep and chicken), and by collection of samples from non-target species (earthworms, fish, aquatic and terrestrial macroinvertebrates, bats, and farm cats). We will use data on PPP residues in environmental and biological matrices to estimate exposures by modelling. These exposure estimates together with health and toxicity data will be used to predict the impact of PPP use on environment, plant, animal and human health. The outcome of this study will then be integrated with socio-economic information leading to an overall assessment used to identify transition pathways towards more sustainable plant protection and inform decision makers, practitioners and other stakeholders regarding farming practices and land use policy.


Subject(s)
Pesticides , Animals , Argentina , Crops, Agricultural/metabolism , Ecosystem , Europe , Humans
7.
Environ Pollut ; 278: 116827, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33744785

ABSTRACT

Considering that pesticides have been used in Europe for over 70 years, a system for monitoring pesticide residues in EU soils and their effects on soil health is long overdue. In an attempt to address this problem, we tested 340 EU agricultural topsoil samples for multiple pesticide residues. These samples originated from 4 representative EU case study sites (CSS), which covered 3 countries and four of the main EU crops: vegetable and orange production in Spain (S-V and S-O, respectively), grape production in Portugal (P-G), and potato production in the Netherlands (N-P). Soil samples were collected between 2015 and 2018 after harvest or before the start of the growing season, depending on the CSS. Conventional and organic farming results were compared in S-V, S-O and N-P. Soils from conventional farms presented mostly mixtures of pesticide residues, with a maximum of 16 residues/sample. Soils from organic farms had significantly fewer residues, with a maximum of 5 residues/sample. The residues with the highest frequency of detection and the highest content in soil were herbicides: glyphosate and its main metabolite AMPA (P-G, N-P, S-O), and pendimethalin (S-V). Total residue content in soil reached values of 0.8 mg kg-1 for S-V, 2 mg kg-1 for S-O and N-P, and 12 mg kg-1 for P-G. Organic soils presented 70-90% lower residue concentrations than the corresponding conventional soils. There is a severe knowledge gap concerning the effects of the accumulated and complex mixtures of pesticide residues found in soil on soil biota and soil health. Safety benchmarks should be defined and introduced into (soil) legislation as soon as possible. Furthermore, the process of transitioning to organic farming should take into consideration the residue mixtures at the conversion time and their residence time in soil.


Subject(s)
Pesticide Residues , Soil Pollutants , Agriculture , Europe , Netherlands , Organic Agriculture , Pesticide Residues/analysis , Portugal , Soil , Soil Pollutants/analysis , Spain
8.
Environ Pollut ; 245: 829-835, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30502712

ABSTRACT

The accumulation of plastic debris and herbicide residues has become a huge challenge and poses many potential risks to environmental health and soil quality. In the present study, we investigated the transport of glyphosate and its main metabolite, aminomethylphosphonic acid (AMPA) via earthworms in the presence of different concentrations of light density polyethylene microplastics in the litter layer during a 14-day mesocosm experiment. The results showed earthworm gallery weight was negatively affected by the combination of glyphosate and microplastics. Glyphosate and AMPA concentrated in the first centimetre of the top soil layer and the downward transport of glyphosate and AMPA was only detected in the earthworm burrows, ranging from 0.04 to 4.25 µg g-1 for glyphosate and from 0.01 (less than limit of detection) to 0.76 µg g-1 for AMPA. The transport rate of glyphosate (including AMPA) from the litter layer into earthworm burrows ranged from 6.6 ±â€¯4.6% to 18.3 ±â€¯2.4%, depending on synergetic effects of microplastics and glyphosate application. The findings imply that earthworm activities strongly influence pollutant movement into the soil, which potentially affects soil ecosystems. Further studies focused on the fate of pollutants in the microenvironment of earthworm burrows are needed.


Subject(s)
Glycine/analogs & derivatives , Oligochaeta/chemistry , Plastics/analysis , Soil Pollutants/analysis , Animals , Ecosystem , Glycine/analysis , Herbicides/analysis , Isoxazoles/analysis , Polyethylene , Soil/chemistry , Tetrazoles/analysis , Glyphosate
9.
Environ Pollut ; 242(Pt A): 338-347, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29990941

ABSTRACT

The intensive use of pesticide and plastic mulches has considerably enhanced crop growth and yield. Pesticide residues and plastic debris, however, have caused serious environmental problems. This study investigated the effects of the commonly used herbicide glyphosate and micrometre-sized plastic debris, referred as microplastics, on glyphosate decay and soil microbial activities in Chinese loess soil by a microcosm experiment over 30 days incubation. Results showed that glyphosate decay was gradual and followed a single first-order decay kinetics model. In different treatments (with/without microplastic addition), glyphosate showed similar half-lives (32.8 days). The soil content of aminomethylphosphonic acid (AMPA), the main metabolite of glyphosate, steadily increased without reaching plateau and declining phases throughout the experiment. Soil microbial respiration significantly changed throughout the entirety of the experiment, particularly in the treatments with higher microplastic addition. The dynamics of soil ß-glucosidase, urease and phosphatase varied, especially in the treatments with high microplastic addition. Particles that were considerably smaller than the initially added microplastic particles were observed after 30 days incubation. This result thus implied that microplastic would hardly affect glyphosate decay but smaller plastic particles accumulated in soils which potentially threaten soil quality would be further concerned especially in the regions with intensive plastic mulching application.


Subject(s)
Glycine/analogs & derivatives , Herbicides/chemistry , Models, Chemical , Plastics/chemistry , Soil Microbiology , Soil Pollutants/chemistry , Glycine/chemistry , Glycine/toxicity , Herbicides/analysis , Herbicides/toxicity , Isoxazoles , Pesticide Residues , Plastics/toxicity , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity , Tetrazoles , Glyphosate
10.
Ecotoxicol Environ Saf ; 71(3): 638-42, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18455235

ABSTRACT

This study focuses on the medium-term effects of soil bioremediation on mortality and reproduction rates of Eisenia fetida (laboratory experiment) and of the tropical earthworm Polypheretima elongata (field experiment). We compared soils restored with the two bioremediation technologies landfarming (LF) and compost-bioremediation (BI) with control soils and with soils contaminated with 1% and 2% of petroleum. Control and restored soils both were fertile and showed low hydrocarbon contents. The mortality of E. fetida was not influenced by soil restoration and by contamination with 1% petroleum; it only increased in soils contaminated with 2% petroleum. However, the reproduction rate of E. fetida was significantly lower in the soils restored with LF and in those contaminated with 1% crude oil and significantly higher in the soils restored with BI. P. elongata showed the same reaction as E. fetida. We conclude that it is important to include reproduction or other sub-lethal tests for earthworms when estimating the efficiency of restoration techniques.


Subject(s)
Oligochaeta/drug effects , Petroleum/toxicity , Soil Pollutants/toxicity , Animals , Biodegradation, Environmental , Mexico , Oligochaeta/metabolism , Petroleum/metabolism , Reproduction/drug effects , Soil/chemistry , Soil Microbiology , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...