Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
2.
Clin Infect Dis ; 77(5): 721-728, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37144342

ABSTRACT

BACKGROUND: The northwestern border of Thailand is an area of low seasonal malaria transmission. Until recent successful malaria elimination activities, malaria was a major cause of disease and death. Historically the incidences of symptomatic Plasmodium falciparum and Plasmodium vivax malaria were approximately similar. METHODS: All malaria cases managed in the Shoklo Malaria Research Unit along the Thailand-Myanmar border between 2000 and 2016 were reviewed. RESULTS: There were 80 841 consultations for symptomatic P. vivax and 94 467 for symptomatic P. falciparum malaria. Overall, 4844 (5.1%) patients with P. falciparum malaria were admitted to field hospitals, of whom 66 died, compared with 278 (0.34%) with P. vivax malaria, of whom 4 died (3 had diagnoses of sepsis, so the contribution of malaria to their fatal outcomes is uncertain). Applying the 2015 World Health Organization severe malaria criteria, 68 of 80 841 P. vivax admissions (0.08%) and 1482 of 94 467 P. falciparum admissions (1.6%) were classified as severe. Overall, patients with P. falciparum malaria were 15 (95% confidence interval, 13.2-16.8) times more likely than those with P. vivax malaria to require hospital admission, 19 (14.6-23.8) times more likely to develop severe malaria, and ≥14 (5.1-38.7) times more likely to die. CONCLUSIONS: In this area, both P. falciparum and P. vivax infections were important causes of hospitalization, but life-threatening P. vivax illness was rare.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Malaria/epidemiology , Malaria, Falciparum/complications , Malaria, Falciparum/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Vivax/epidemiology , Myanmar/epidemiology , Plasmodium falciparum , Plasmodium vivax , Thailand/epidemiology
3.
Virusdisease ; 32(3): 446-466, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34631974

ABSTRACT

Hepatitis B is one of the major burdens for health services and is the leading cause of morbidity and mortality from cirrhosis of liver and hepatocellular carcinoma. Current treatment strategies using nucleos(t)ide analogue reverse-transcriptase inhibitors or interferons are targeted for the long-term suppression of hepatitis B DNA. However, functional cure of hepatitis B infection (HBsAg clearance) was difficult to attain with such treatments. Therefore, new treatment strategies or innovative treatments are urgently needed. The new treatments should focus on the potential therapeutic targets such as covalently closed circular DNA which may be important for the HBsAg clearance. Plant based medicines have been used in different traditional medicine practices and these natural products/compounds serve as a good source of information or clues for use in drug discovery and design. Many natural products were found to be effective against hepatitis B virus and some even have better therapeutic activities than currently used compounds. This review summarizes the current evidence of Myanmar medicinal plants in basic and clinical research which shows promising potential for the development of novel therapeutic agents for the treatment of hepatitis B.

6.
BMC Med ; 18(1): 138, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32482173

ABSTRACT

BACKGROUND: Malaria in pregnancy, including asymptomatic infection, has a detrimental impact on foetal development. Individual patient data (IPD) meta-analysis was conducted to compare the association between antimalarial treatments and adverse pregnancy outcomes, including placental malaria, accompanied with the gestational age at diagnosis of uncomplicated falciparum malaria infection. METHODS: A systematic review and one-stage IPD meta-analysis of studies assessing the efficacy of artemisinin-based and quinine-based treatments for patent microscopic uncomplicated falciparum malaria infection (hereinafter uncomplicated falciparum malaria) in pregnancy was conducted. The risks of stillbirth (pregnancy loss at ≥ 28.0 weeks of gestation), moderate to late preterm birth (PTB, live birth between 32.0 and < 37.0 weeks), small for gestational age (SGA, birthweight of < 10th percentile), and placental malaria (defined as deposition of malaria pigment in the placenta with or without parasites) after different treatments of uncomplicated falciparum malaria were assessed by mixed-effects logistic regression, using artemether-lumefantrine, the most used antimalarial, as the reference standard. Registration PROSPERO: CRD42018104013. RESULTS: Of the 22 eligible studies (n = 5015), IPD from16 studies were shared, representing 95.0% (n = 4765) of the women enrolled in literature. Malaria treatment in this pooled analysis mostly occurred in the second (68.4%, 3064/4501) or third trimester (31.6%, 1421/4501), with gestational age confirmed by ultrasound in 91.5% (4120/4503). Quinine (n = 184) and five commonly used artemisinin-based combination therapies (ACTs) were included: artemether-lumefantrine (n = 1087), artesunate-amodiaquine (n = 775), artesunate-mefloquine (n = 965), and dihydroartemisinin-piperaquine (n = 837). The overall pooled proportion of stillbirth was 1.1% (84/4361), PTB 10.0% (619/4131), SGA 32.3% (1007/3707), and placental malaria 80.1% (2543/3035), and there were no significant differences of considered outcomes by ACT. Higher parasitaemia before treatment was associated with a higher risk of SGA (adjusted odds ratio [aOR] 1.14 per 10-fold increase, 95% confidence interval [CI] 1.03 to 1.26, p = 0.009) and deposition of malaria pigment in the placenta (aOR 1.67 per 10-fold increase, 95% CI 1.42 to 1.96, p < 0.001). CONCLUSIONS: The risks of stillbirth, PTB, SGA, and placental malaria were not different between the commonly used ACTs. The risk of SGA was high among pregnant women infected with falciparum malaria despite treatment with highly effective drugs. Reduction of malaria-associated adverse birth outcomes requires effective prevention in pregnant women.


Subject(s)
Antimalarials/adverse effects , Artemisinins/adverse effects , Malaria, Falciparum/chemically induced , Placenta/drug effects , Quinine/adverse effects , Adult , Antimalarials/pharmacology , Artemisinins/pharmacology , Female , Humans , Malaria, Falciparum/complications , Placenta/pathology , Pregnancy , Pregnancy Outcome/epidemiology , Quinine/pharmacology , Quinine/supply & distribution , Young Adult
7.
Lancet Infect Dis ; 20(8): 943-952, 2020 08.
Article in English | MEDLINE | ID: mdl-32530424

ABSTRACT

BACKGROUND: Malaria in pregnancy affects both the mother and the fetus. However, evidence supporting treatment guidelines for uncomplicated (including asymptomatic) falciparum malaria in pregnant women is scarce and assessed in varied ways. We did a systematic literature review and individual patient data (IPD) meta-analysis to compare the efficacy and tolerability of different artemisinin-based or quinine-based treatments for malaria in pregnant women. METHODS: We did a systematic review of interventional or observational cohort studies assessing the efficacy of artemisinin-based or quinine-based treatments in pregnancy. Seven databases (MEDLINE, Embase, Global Health, Cochrane Library, Scopus, Web of Science, and Literatura Latino Americana em Ciencias da Saude) and two clinical trial registries (International Clinical Trials Registry Platform and ClinicalTrials.gov) were searched. The final search was done on April 26, 2019. Studies that assessed PCR-corrected treatment efficacy in pregnancy with follow-up of 28 days or more were included. Investigators of identified studies were invited to share data from individual patients. The outcomes assessed included PCR-corrected efficacy, PCR-uncorrected efficacy, parasite clearance, fever clearance, gametocyte development, and acute adverse events. One-stage IPD meta-analysis using Cox and logistic regression with random-effects was done to estimate the risk factors associated with PCR-corrected treatment failure, using artemether-lumefantrine as the reference. This study is registered with PROSPERO, CRD42018104013. FINDINGS: Of the 30 studies assessed, 19 were included, representing 92% of patients in the literature (4968 of 5360 episodes). Risk of PCR-corrected treatment failure was higher for the quinine monotherapy (n=244, adjusted hazard ratio [aHR] 6·11, 95% CI 2·57-14·54, p<0·0001) but lower for artesunate-amodiaquine (n=840, 0·27, 95% 0·14-0·52, p<0·0001), artesunate-mefloquine (n=1028, 0·56, 95% 0·34-0·94, p=0·03), and dihydroartemisinin-piperaquine (n=872, 0·35, 95% CI 0·18-0·68, p=0·002) than artemether-lumefantrine (n=1278) after adjustment for baseline asexual parasitaemia and parity. The risk of gametocyte carriage on day 7 was higher after quinine-based therapy than artemisinin-based treatment (adjusted odds ratio [OR] 7·38, 95% CI 2·29-23·82). INTERPRETATION: Efficacy and tolerability of artemisinin-based combination therapies (ACTs) in pregnant women are better than quinine. The lower efficacy of artemether-lumefantrine compared with other ACTs might require dose optimisation. FUNDING: The Bill & Melinda Gates Foundation, ExxonMobil Foundation, and the University of Oxford Clarendon Fund.


Subject(s)
Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Pregnancy Complications, Parasitic/drug therapy , Quinine/therapeutic use , Amodiaquine/therapeutic use , Anti-Bacterial Agents/therapeutic use , Antimalarials/adverse effects , Artemisinins/therapeutic use , Artesunate/therapeutic use , Atovaquone/therapeutic use , Clindamycin/therapeutic use , Drug Combinations , Drug Therapy, Combination , Female , Humans , Mefloquine/therapeutic use , Pregnancy , Proguanil/therapeutic use , Pyrimethamine/therapeutic use , Quinine/adverse effects , Quinolines/therapeutic use , Sulfadoxine/therapeutic use
8.
PLoS One ; 15(2): e0228190, 2020.
Article in English | MEDLINE | ID: mdl-32023293

ABSTRACT

BACKGROUND: Mass administrations of antimalarial drugs (MDA) have reduced the incidence and prevalence of P. falciparum infections in a trial in the Greater Mekong Subregion. Here we assess the impact of the MDA on P. vivax infections. METHODS: Between May 2013 and July 2017, four villages in each Myanmar, Vietnam, Cambodia and Lao PDR were selected based on high prevalence of P. falciparum infections. Eight of the 16 villages were randomly assigned to receive MDA consisting of three-monthly rounds of three-day courses of dihydroartemisinin-piperaquine and, except in Cambodia, a single low-dose of primaquine. Cross-sectional surveys were conducted at quarterly intervals to detect Plasmodium infections using ultrasensitive qPCR. The difference in the cumulative incidence between the groups was assessed through a discrete time survival approach, the difference in prevalence through a difference-in-difference analysis, and the difference in the number of participants with a recurrence of P. vivax infection through a mixed-effect logistic regression. RESULTS: 3,790 (86%) residents in the intervention villages participated in at least one MDA round, of whom 2,520 (57%) participated in three rounds. The prevalence of P. vivax infections fell from 9.31% to 0.89% at month 3 but rebounded by six months to 5.81%. There was no evidence that the intervention reduced the cumulative incidence of P.vivax infections (95% confidence interval [CI] Odds ratio (OR): 0.29 to 1.36). Similarly, there was no evidence of MDA related reduction in the number of participants with at least one recurrent infection (OR: 0.34; 95% CI: 0.08 to 1.42). CONCLUSION: MDA with schizontocidal drugs had a lasting effect on P. falciparum infections but only a transient effect on the prevalence of P. vivax infections. Radical cure with an 8-aminoquinoline will be needed for the rapid elimination of vivax malaria.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Vivax/drug therapy , Primaquine/therapeutic use , Quinolines/therapeutic use , Adolescent , Adult , Cambodia/epidemiology , Child , Female , Humans , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Male , Mass Drug Administration , Myanmar/epidemiology , Prevalence , Recurrence , Treatment Outcome , Vietnam/epidemiology , Young Adult
9.
PLoS Med ; 16(2): e1002745, 2019 02.
Article in English | MEDLINE | ID: mdl-30768615

ABSTRACT

BACKGROUND: The emergence and spread of multidrug-resistant Plasmodium falciparum in the Greater Mekong Subregion (GMS) threatens global malaria elimination efforts. Mass drug administration (MDA), the presumptive antimalarial treatment of an entire population to clear the subclinical parasite reservoir, is a strategy to accelerate malaria elimination. We report a cluster randomised trial to assess the effectiveness of dihydroartemisinin-piperaquine (DP) MDA in reducing falciparum malaria incidence and prevalence in 16 remote village populations in Myanmar, Vietnam, Cambodia, and the Lao People's Democratic Republic, where artemisinin resistance is prevalent. METHODS AND FINDINGS: After establishing vector control and community-based case management and following intensive community engagement, we used restricted randomisation within village pairs to select 8 villages to receive early DP MDA and 8 villages as controls for 12 months, after which the control villages received deferred DP MDA. The MDA comprised 3 monthly rounds of 3 daily doses of DP and, except in Cambodia, a single low dose of primaquine. We conducted exhaustive cross-sectional surveys of the entire population of each village at quarterly intervals using ultrasensitive quantitative PCR to detect Plasmodium infections. The study was conducted between May 2013 and July 2017. The investigators randomised 16 villages that had a total of 8,445 residents at the start of the study. Of these 8,445 residents, 4,135 (49%) residents living in 8 villages, plus an additional 288 newcomers to the villages, were randomised to receive early MDA; 3,790 out of the 4,423 (86%) participated in at least 1 MDA round, and 2,520 out of the 4,423 (57%) participated in all 3 rounds. The primary outcome, P. falciparum prevalence by month 3 (M3), fell by 92% (from 5.1% [171/3,340] to 0.4% [12/2,828]) in early MDA villages and by 29% (from 7.2% [246/3,405] to 5.1% [155/3,057]) in control villages. Over the following 9 months, the P. falciparum prevalence increased to 3.3% (96/2,881) in early MDA villages and to 6.1% (128/2,101) in control villages (adjusted incidence rate ratio 0.41 [95% CI 0.20 to 0.84]; p = 0.015). Individual protection was proportional to the number of completed MDA rounds. Of 221 participants with subclinical P. falciparum infections who participated in MDA and could be followed up, 207 (94%) cleared their infections, including 9 of 10 with artemisinin- and piperaquine-resistant infections. The DP MDAs were well tolerated; 6 severe adverse events were detected during the follow-up period, but none was attributable to the intervention. CONCLUSIONS: Added to community-based basic malaria control measures, 3 monthly rounds of DP MDA reduced the incidence and prevalence of falciparum malaria over a 1-year period in areas affected by artemisinin resistance. P. falciparum infections returned during the follow-up period as the remaining infections spread and malaria was reintroduced from surrounding areas. Limitations of this study include a relatively small sample of villages, heterogeneity between villages, and mobility of villagers that may have limited the impact of the intervention. These results suggest that, if used as part of a comprehensive, well-organised, and well-resourced elimination programme, DP MDA can be a useful additional tool to accelerate malaria elimination. TRIAL REGISTRATION: ClinicalTrials.gov NCT01872702.


Subject(s)
Antimalarials/administration & dosage , Disease Eradication/methods , Drug Resistance, Multiple/drug effects , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Mass Drug Administration/methods , Adolescent , Adult , Asia, Southeastern/epidemiology , Child , Cluster Analysis , Cross-Over Studies , Drug Resistance, Multiple/physiology , Female , Humans , Malaria, Falciparum/diagnosis , Male , Young Adult
10.
Clin Infect Dis ; 67(10): 1543-1549, 2018 10 30.
Article in English | MEDLINE | ID: mdl-29889239

ABSTRACT

Background: Chloroquine has been recommended for Plasmodium vivax infections for >60 years, but resistance is increasing. To guide future therapies, the cumulative benefits of using slowly eliminated (chloroquine) vs rapidly eliminated (artesunate) antimalarials, and the risks and benefits of adding radical cure (primaquine) were assessed in a 3-way randomized comparison conducted on the Thailand-Myanmar border. Methods: Patients with uncomplicated P. vivax malaria were given artesunate (2 mg/kg/day for 5 days), chloroquine (25 mg base/kg over 3 days), or chloroquine-primaquine (0.5 mg/kg/day for 14 days) and were followed for 1 year. Recurrence rates and their effects on anemia were compared. Results: Between May 2010 and October 2012, 644 patients were enrolled. Artesunate cleared parasitemia significantly faster than chloroquine. Day 28 recurrence rates were 50% with artesunate (112/224), 8% with chloroquine (18/222; P < .001), and 0.5% with chloroquine-primaquine (1/198; P < .001). Median times to first recurrence were 28 days (interquartile range [IQR], 21-42) with artesunate, 49 days (IQR, 35-74) with chloroquine, and 195 days (IQR, 82-281) with chloroquine-primaquine. Recurrence by day 28, was associated with a mean absolute reduction in hematocrit of 1% (95% confidence interval [CI], .3%-2.0%; P = .009). Primaquine radical cure reduced the total recurrences by 92.4%. One-year recurrence rates were 4.51 (95% CI, 4.19-4.85) per person-year with artesunate, 3.45 (95% CI, 3.18-3.75) with chloroquine (P = .002), and 0.26 (95% CI, .19-.36) with chloroquine-primaquine (P < .001). Conclusions: Vivax malaria relapses are predominantly delayed by chloroquine but prevented by primaquine. Clinical Trials Registration: NCT01074905.


Subject(s)
Antimalarials/therapeutic use , Artesunate/therapeutic use , Chloroquine/therapeutic use , Malaria, Vivax/drug therapy , Primaquine/therapeutic use , Adolescent , Adult , Child , Child, Preschool , Drug Therapy, Combination , Female , Humans , Infant , Male , Middle Aged , Myanmar , Parasitemia/drug therapy , Plasmodium vivax/drug effects , Recurrence , Thailand , Treatment Outcome , Young Adult
11.
J Clin Microbiol ; 56(8)2018 08.
Article in English | MEDLINE | ID: mdl-29898998

ABSTRACT

In the Greater Mekong Subregion in Southeast Asia, malaria elimination strategies need to target all Plasmodium falciparum parasites, including those carried asymptomatically. More than 70% of asymptomatic carriers are not detected by current rapid diagnostic tests (RDTs) or microscopy. An HRP2-based ultrasensitive RDT (uRDT) developed to improve the detection of low-density infections was evaluated during prevalence surveys within a malaria elimination program in a low-transmission area of eastern Myanmar. Surveys were conducted to identify high-prevalence villages. Two-milliliter venous blood samples were collected from asymptomatic adult volunteers and transported to the laboratory. Plasmodium parasites were detected by RDT, uRDT, microscopy, ultrasensitive qPCR (uPCR), and multiplex enzyme-linked immunosorbent assay (ELISA). The sensitivity, specificity, and predictive positive and negative values of RDT and uRDT were calculated compared to uPCR and ELISA. Parasite and antigen concentrations detected by each test were defined using uPCR and ELISA, respectively. A total of 1,509 samples, including 208 P. falciparum-positive samples were analyzed with all tests. The sensitivity of the uRDT was twofold higher than that of RDT, 51.4% versus 25.2%, with minor specificity loss, 99.5% versus 99.9%, against the combined reference (uPCR plus ELISA). The geometric mean parasitemia detected by uRDT in P. falciparum monospecific infections was 3,019 parasites per ml (95% confidence interval [95% CI], 1,790 to 5,094; n = 79) compared to 11,352 parasites per ml (95% CI, 5,643 to 22,837; n = 38) by RDT. The sensitivities of uRDT and RDT dropped to 34.6% and 15.1%, respectively, for the matched tests performed in the field. The uRDT performed consistently better than RDT and microscopy at low parasitemias. It shows promising characteristics for the identification of high-prevalence communities and warrants further evaluation in mass screening and treatment interventions.


Subject(s)
Asymptomatic Infections/epidemiology , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Parasitemia/diagnosis , Adult , Antigens, Protozoan/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Malaria, Falciparum/epidemiology , Male , Microscopy , Middle Aged , Myanmar/epidemiology , Parasitemia/epidemiology , Prevalence , Protozoan Proteins/blood , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
12.
Lancet ; 391(10133): 1916-1926, 2018 05 12.
Article in English | MEDLINE | ID: mdl-29703425

ABSTRACT

BACKGROUND: Potentially untreatable Plasmodium falciparum malaria threatens the Greater Mekong subregion. A previous series of pilot projects in Myanmar, Laos, Cambodia, and Vietnam suggested that mass drug administration was safe, and when added to provision of early diagnosis and treatment, could reduce the reservoir of P falciparum and interrupts transmission. We examined the effects of a scaled-up programme of this strategy in four townships of eastern Myanmar on the incidence of P falciparum malaria. METHODS: The programme was implemented in the four townships of Myawaddy, Kawkareik, Hlaingbwe, and Hpapun in Kayin state, Myanmar. Increased access to early diagnosis and treatment of malaria was provided to all villages through community-based malaria posts equipped with rapid diagnostic tests, and treatment with artemether-lumefantrine plus single low-dose primaquine. Villages were identified as malarial hotspots (operationally defined as >40% malaria, of which 20% was P falciparum) with surveys using ultrasensitive quantitative PCR either randomly or targeted at villages where the incidence of clinical cases of P falciparum malaria remained high (ie, >100 cases per 1000 individuals per year) despite a functioning malaria post. During each survey, a 2 mL sample of venous blood was obtained from randomly selected adults. Hotspots received targeted mass drug administration with dihydroartemisinin-piperaquine plus single-dose primaquine once per month for 3 consecutive months in addition to the malaria posts. The main outcome was the change in village incidence of clinical P falciparum malaria, quantified using a multivariate, generalised, additive multilevel model. Malaria prevalence was measured in the hotspots 12 months after mass drug administration. FINDINGS: Between May 1, 2014, and April 30, 2017, 1222 malarial posts were opened, providing early diagnosis and treatment to an estimated 365 000 individuals. Incidence of P falciparum malaria decreased by 60 to 98% in the four townships. 272 prevalence surveys were undertaken and 69 hotspot villages were identified. By April 2017, 50 hotspots were treated with mass drug administration. Hotspot villages had a three times higher incidence of P falciparum at malarial posts than neighbouring villages (adjusted incidence rate ratio [IRR] 2·7, 95% CI 1·8-4·4). Early diagnosis and treatment was associated with a significant decrease in P falciparum incidence in hotspots (IRR 0·82, 95% CI 0·76-0·88 per quarter) and in other villages (0·75, 0·73-0·78 per quarter). Mass drug administration was associated with a five-times decrease in P falciparum incidence within hotspot villages (IRR 0·19, 95% CI 0·13-0·26). By April, 2017, 965 villages (79%) of 1222 corresponding to 104 village tracts were free from P falciparum malaria for at least 6 months. The prevalence of wild-type genotype for K13 molecular markers of artemisinin resistance was stable over the three years (39%; 249/631). INTERPRETATION: Providing early diagnosis and effective treatment substantially decreased village-level incidence of artemisinin-resistant P falciparum malaria in hard-to-reach, politically sensitive regions of eastern Myanmar. Targeted mass drug administration significantly reduced malaria incidence in hotspots. If these activities could proceed in all contiguous endemic areas in addition to standard control programmes already implemented, there is a possibility of subnational elimination of P falciparum. FUNDING: The Bill & Melinda Gates Foundation, the Regional Artemisinin Initiative (Global Fund against AIDS, Tuberculosis and Malaria), and the Wellcome Trust.


Subject(s)
Antimalarials/administration & dosage , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Mass Drug Administration/methods , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination , Artemisinins/administration & dosage , Artemisinins/therapeutic use , Drug Combinations , Drug Resistance , Early Diagnosis , Ethanolamines/administration & dosage , Ethanolamines/therapeutic use , Female , Fluorenes/administration & dosage , Fluorenes/therapeutic use , Humans , Incidence , Malaria, Falciparum/epidemiology , Male , Myanmar/epidemiology , Prevalence , Primaquine/administration & dosage , Primaquine/therapeutic use , Rural Population , State Medicine , Treatment Outcome
13.
Wellcome Open Res ; 3: 116, 2018.
Article in English | MEDLINE | ID: mdl-30687790

ABSTRACT

Background: In light of growing antimalarial drug resistance in Southeast Asia, control programmes have become increasingly focused on malaria elimination, composed of mass drug administration coupled with prompt diagnosis and treatment of symptomatic cases. The key to a successful elimination programme centres on high participation rates in targeted communities, often enhanced by community engagement (CE) efforts. Social science research was conducted to develop a conceptual framework used for CE activities in the Targeted Malaria Elimination programme, as a cross-border operation in Karen/Kayin State, Myanmar. Methods: Data was collected from three main sources: (1) participant observation and semi-structured interviews of CE team members; (2) participant observation and semi-structured interviews with villagers; and (3) records of CE workshops with CE workers conducted as part of the TME programme. Results: Interviews were conducted with 17 CE team members, with 10 participant observations and interviews conducted with villagers and a total of 3 workshops conducted over the course of this pilot programme in 4 villages (November 2013 to October 2014). Thematic analysis was used to construct the nine dimensions for CE in this complex, post-war region: i) history of the people; ii) space; iii) work; iv) knowledge about the world; v) intriguing obstacle (rumour); vi) relationship with the health care system; vii) migration; viii) logic of capitalism influencing openness; and ix) power relations. Conclusions: Conducting CE for the Targeted Malaria Elimination programme was immensely complicated in Karen/Kayin State because of three key realities: heterogeneous terrains, a post-war atmosphere and cross-border operations. These three key realities constituted the nine dimensions, which proved integral to health worker success in conducting CE. Summary of this approach can aid in infectious disease control programmes, such as those using mass drug administration, to engender high rates of community participation.

14.
PLoS Med ; 14(1): e1002212, 2017 01.
Article in English | MEDLINE | ID: mdl-28072872

ABSTRACT

BACKGROUND: Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine. METHODS AND FINDINGS: Published pharmacokinetic studies on piperaquine were identified through a systematic literature review of articles published between 1 January 1960 and 15 February 2013. Individual plasma piperaquine concentration-time data from 11 clinical studies (8,776 samples from 728 individuals) in adults and children with uncomplicated malaria and healthy volunteers were collated and standardised by the WorldWide Antimalarial Resistance Network. Data were pooled and analysed using nonlinear mixed-effects modelling. Piperaquine pharmacokinetics were described successfully by a three-compartment disposition model with flexible absorption. Body weight influenced clearance and volume parameters significantly, resulting in lower piperaquine exposures in small children (<25 kg) compared to larger children and adults (≥25 kg) after administration of the manufacturers' currently recommended dose regimens. Simulated median (interquartile range) day 7 plasma concentration was 29.4 (19.3-44.3) ng/ml in small children compared to 38.1 (25.8-56.3) ng/ml in larger children and adults, with the recommended dose regimen. The final model identified a mean (95% confidence interval) increase of 23.7% (15.8%-32.5%) in piperaquine bioavailability between each piperaquine dose occasion. The model also described an enzyme maturation function in very young children, resulting in 50% maturation at 0.575 (0.413-0.711) y of age. An evidence-based optimised dose regimen was constructed that would provide piperaquine exposures across all ages comparable to the exposure currently seen in a typical adult with standard treatment, without exceeding the concentration range observed with the manufacturers' recommended regimen. Limited data were available in infants and pregnant women with malaria as well as in healthy individuals. CONCLUSIONS: The derived population pharmacokinetic model was used to develop a revised dose regimen of dihydroartemisinin-piperaquine that is expected to provide equivalent piperaquine exposures safely in all patients, including in small children with malaria. Use of this dose regimen is expected to prolong the useful therapeutic life of dihydroartemisinin-piperaquine by increasing cure rates and thereby slowing resistance development. This work was part of the evidence that informed the World Health Organization technical guidelines development group in the development of the recently published treatment guidelines (2015).


Subject(s)
Malaria, Falciparum/drug therapy , Quinolines/pharmacokinetics , Quinolines/therapeutic use , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Humans , Plasmodium falciparum/drug effects , Quinolines/pharmacology
15.
Wellcome Open Res ; 2: 98, 2017.
Article in English | MEDLINE | ID: mdl-29384151

ABSTRACT

Background: Myanmar has one of the largest malaria burdens in the Greater Mekong Subregion (GMS). Throughout the GMS, Plasmodium falciparum parasites are increasingly resistant to artemisinin combination therapies. Given that there are no current alternative treatment therapies, one proposed solution to the threat of untreatable P. falciparum malaria is to eliminate the parasite from the region. Several small-scale elimination projects have been piloted in the GMS, including along the Myanmar-Thailand border. Following the success of the pilot elimination project along the Myanmar-Thailand border, there was a scale up to a broad area of Eastern Kayin State, Myanmar. Here we describe the establishment of the scale up elimination project in Easter Kayin State. Methods: The scale up relied on geographic reconnaissance and a geographic information system, community engagement, generalized access to community-based early diagnosis and treatment, near real-time epidemiological surveillance, cross sectional malaria prevalence surveys and targeted mass drug administration in villages with high prevalence of P. falciparum malaria. Molecular markers of drug resistance were also monitored in individuals with symptomatic and asymptomatic infections. Discussion: This protocol illustrates the establishment of an elimination project and operational research in a remote, rural area encompassing several armed groups, multiple political organizations and a near-absent health care infrastructure. The establishment of the project relied on a strong rapport with the target community, on-the-ground knowledge (through geographic surveys and community engagement), rapid decision making and an approach that was flexible enough to quickly adapt to a complex landscape. The elimination project is ongoing, now over three years in operation, and assessment of the impact of this operational research will follow. This project has relevance not only for other malaria elimination projects but also for operational research aimed at eliminating other diseases.

16.
Malar J ; 15: 363, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27421656

ABSTRACT

Falciparum malaria persists in hard-to-reach areas or demographic groups that are missed by conventional healthcare systems but could be reached by trained community members in a malaria post (MP). The main focus of a MP is to provide uninterrupted and rapid access to rapid diagnostic tests (RDTs) and artemisinin-based combination therapy (ACT) too all inhabitants of a village. RDTs allow trained community members to perform malaria diagnosis accurately and prescribe appropriate treatment, reducing as much as possible any delay between the onset of fever and treatment. Early treatment with ACT and with a low-dose of primaquine prevents further transmission from human to mosquito. A functioning MP represents an essential component of any malaria elimination strategy. Implementing large-scale, high-coverage, community-based early diagnosis and treatment through MPs requires few technological innovations but relies on a very well structured organization able to train, supervise and supply MPs, to monitor activity and to perform strict malaria surveillance.


Subject(s)
Disease Eradication/methods , Disease Transmission, Infectious/prevention & control , Early Diagnosis , Malaria/diagnosis , Malaria/prevention & control , Secondary Prevention , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Diagnostic Tests, Routine/statistics & numerical data , Drug Therapy, Combination/methods , Drug Therapy, Combination/statistics & numerical data , Humans , Lactones/therapeutic use , Primaquine/therapeutic use
17.
Clin Infect Dis ; 63(6): 784-791, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27313266

ABSTRACT

BACKGROUND: Deployment of mefloquine-artesunate (MAS3) on the Thailand-Myanmar border has led to a sustained reduction in falciparum malaria, although antimalarial efficacy has declined substantially in recent years. The role of Plasmodium falciparum K13 mutations (a marker of artemisinin resistance) in reducing treatment efficacy remains controversial. METHODS: Between 2003 and 2013, we studied the efficacy of MAS3 in 1005 patients with uncomplicated P. falciparum malaria in relation to molecular markers of resistance. RESULTS: Polymerase chain reaction (PCR)-adjusted cure rates declined from 100% in 2003 to 81.1% in 2013 as the proportions of isolates with multiple Pfmdr1 copies doubled from 32.4% to 64.7% and those with K13 mutations increased from 6.7% to 83.4%. K13 mutations conferring moderate artemisinin resistance (notably E252Q) predominated initially but were later overtaken by propeller mutations associated with slower parasite clearance (notably C580Y). Those infected with both multiple Pfmdr1 copy number and a K13 propeller mutation were 14 times more likely to fail treatment. The PCR-adjusted cure rate was 57.8% (95% confidence interval [CI], 45.4, 68.3) compared with 97.8% (95% CI, 93.3, 99.3) in patients with K13 wild type and Pfmdr1 single copy. K13 propeller mutation alone was a strong risk factor for recrudescence (P = .009). The combined population attributable fraction of recrudescence associated with K13 mutation and Pfmdr1 amplification was 82%. CONCLUSIONS: The increasing prevalence of K13 mutations was the decisive factor for the recent and rapid decline in efficacy of artemisinin-based combination (MAS3) on the Thailand-Myanmar border.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum/drug therapy , Mefloquine , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance , Female , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Mefloquine/pharmacology , Mefloquine/therapeutic use , Myanmar/epidemiology , Plasmodium falciparum/pathogenicity , Prospective Studies , Thailand/epidemiology
18.
J Infect Dis ; 213(8): 1322-9, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26681777

ABSTRACT

BACKGROUND: Asymptomatic parasitemia is common even in areas of low seasonal malaria transmission, but the true proportion of the population infected has not been estimated previously because of the limited sensitivity of available detection methods. METHODS: Cross-sectional malaria surveys were conducted in areas of low seasonal transmission along the border between eastern Myanmar and northwestern Thailand and in western Cambodia. DNA was quantitated by an ultrasensitive polymerase chain reaction (uPCR) assay (limit of accurate detection, 22 parasites/mL) to characterize parasite density distributions for Plasmodium falciparum and Plasmodium vivax, and the proportions of undetected infections were imputed. RESULTS: The prevalence of asymptomatic malaria as determined by uPCR was 27.5% (1303 of 4740 people tested). Both P. vivax and P. falciparum density distributions were unimodal and log normal, with modal values well within the quantifiable range. The estimated proportions of all parasitemic individuals identified by uPCR were >70% among individuals infected with P. falciparum and >85% among those infected with P. vivax. Overall, 83% of infections were predicted to be P. vivax infections, 13% were predicted to be P. falciparum infections, and 4% were predicted to be mixed infections. Geometric mean parasite densities were similar; 5601 P. vivax parasites/mL and 5158 P. falciparum parasites/mL. CONCLUSIONS: This uPCR method identified most infected individuals in malaria-endemic areas. Malaria parasitemia persists in humans at levels that optimize the probability of generating transmissible gametocyte densities without causing illness.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Adolescent , Adult , Asia, Southeastern/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Male , Parasitemia/epidemiology , Parasitemia/parasitology , Prevalence , Young Adult
19.
Malar J ; 14: 381, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26424000

ABSTRACT

BACKGROUND: The importance of the submicroscopic reservoir of Plasmodium infections for malaria elimination depends on its size, which is generally considered small in low transmission settings. The precise estimation of this reservoir requires more sensitive parasite detection methods. The prevalence of asymptomatic, sub-microscopic malaria was assessed by a sensitive, high blood volume quantitative real-time polymerase chain reaction method in three countries of the Greater Mekong Sub-region. METHODS: Cross-sectional surveys were conducted in three villages in western Cambodia, four villages along the Thailand-Myanmar border and four villages in southwest Vietnam. Malaria parasitaemia was assessed by Plasmodium falciparum/pan malaria rapid diagnostic tests (RDTs), microscopy and a high volume ultra-sensitive real-time polymerase chain reaction (HVUSqPCR: limit of detection 22 parasites/mL). All villagers older than 6 months were invited to participate. RESULTS: A census before the surveys identified 7355 residents in the study villages. Parasite prevalence was 224/5008 (4 %) by RDT, 229/5111 (5 %) by microscopy, and 988/4975 (20 %) when assessed by HVUSqPCR. Of these 164 (3 %) were infected with P. falciparum, 357 (7 %) with Plasmodium vivax, 56 (1 %) with a mixed infection, and 411 (8 %) had parasite densities that were too low for species identification. A history of fever, male sex, and age of 15 years or older were independently associated with parasitaemia in a multivariate regression model stratified by site. CONCLUSION: Light microscopy and RDTs identified only a quarter of all parasitaemic participants. The asymptomatic Plasmodium reservoir is considerable, even in low transmission settings. Novel strategies are needed to eliminate this previously under recognized reservoir of malaria transmission.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria/epidemiology , Adolescent , Adult , Asia, Southeastern/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Male , Plasmodium falciparum , Plasmodium vivax , Young Adult
20.
Malar J ; 14: 319, 2015 Aug 16.
Article in English | MEDLINE | ID: mdl-26275909

ABSTRACT

BACKGROUND: Resistance to the artemisinin derivatives in Plasmodium falciparum has emerged in Cambodia and is now spreading throughout South-East Asia. The rapid elimination of P. falciparum seems to be the only viable option to avoid a public health disaster but this is difficult because even in low transmission settings many residents have asymptomatic parasitaemias. METHODS: In response to a large number of malaria cases reported in three remote villages on the Thai-Myanmar border where malaria is endemic and the disease is seasonal, surveys were conducted using an ultra-sensitive qPCR assay (LOD 22 parasites per mL). In one of the villages where it was feasible, mass anti-malarial drug administration was proposed to the population as a potential solution, and this was adopted. RESULTS: In the three villages 204/356 (57.3 %), 212/385 (55.1 %) and 195/286 (68.2 %) of the resident populations were positive by qPCR (approximately one-third P. falciparum and two-thirds P. vivax). Of those positive for P. falciparum 62 % carried single point mutations in the P. falciparum kelch protein (a marker of artemisinin resistance). In one of the villages 217 of 674 inhabitants received at least one dose of dihydroartemisinin-piperaquine chemoprevention in June 2012, 155 (71.4 %) received two consecutive months, and 98 (45.2 %) received three treatment doses. The chemoprevention was generally well tolerated. The sub-microscopic reservoir of P. falciparum malaria was eliminated during the six-month follow-up period (prevalence fell from 7 to 0 %); P. vivax malaria persisted (prevalence fell from 35 to 8 %). From June to October 2012 (rainy season) the number of clinical episodes of P. falciparum was six times lower (46), than during the same period in the previous year (290). CONCLUSION: Mass drug administration with dihydroartemisinin-piperaquine may be an effective strategy to eliminate P. falciparum rapidly where multi-drug resistance is present.


Subject(s)
Drug Resistance, Multiple , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Adolescent , Adult , Antimalarials/pharmacology , Child , Cross-Sectional Studies , Female , Humans , Malaria, Falciparum/parasitology , Male , Myanmar/epidemiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Thailand/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...