Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Care ; 44(8): 1816-1825, 2021 08.
Article in English | MEDLINE | ID: mdl-34172489

ABSTRACT

OBJECTIVE: Multiple genome-wide association studies have identified a strong genetic linkage between the SKAP2 locus and type 1 diabetes (T1D), but how this leads to disease remains obscure. Here, we characterized the functional consequence of a novel SKAP2 coding mutation in a patient with T1D to gain further insight into how this impacts immune tolerance. RESEARCH DESIGN AND METHODS: We identified a 24-year-old individual with T1D and other autoimmune and inflammatory conditions. The proband and first-degree relatives were recruited for whole-exome sequencing. Functional studies of the protein variant were performed using a cell line and primary myeloid immune cells collected from family members. RESULTS: Sequencing identified a de novo SKAP2 variant (c.457G>A, p.Gly153Arg) in the proband. Assays using monocyte-derived macrophages from the individual revealed enhanced activity of integrin pathways and a migratory phenotype in the absence of chemokine stimulation, consistent with SKAP2 p.Gly153Arg being constitutively active. The p.Gly153Arg variant, located in the well-conserved lipid-binding loop, induced similar phenotypes when expressed in a human macrophage cell line. SKAP2 p.Gly153Arg is a gain-of-function, pathogenic mutation that disrupts myeloid immune cell function, likely resulting in a break in immune tolerance and T1D. CONCLUSIONS: SKAP2 plays a key role in myeloid cell activation and migration. This particular mutation in a patient with T1D and multiple autoimmune conditions implicates a role for activating SKAP2 variants in autoimmune T1D.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Intracellular Signaling Peptides and Proteins , Adult , Diabetes Mellitus, Type 1/genetics , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Phenotype , Young Adult
2.
Nature ; 559(7715): 627-631, 2018 07.
Article in English | MEDLINE | ID: mdl-30022164

ABSTRACT

The thymus is responsible for generating a diverse yet self-tolerant pool of T cells1. Although the thymic medulla consists mostly of developing and mature AIRE+ epithelial cells, recent evidence has suggested that there is far greater heterogeneity among medullary thymic epithelial cells than was previously thought2. Here we describe in detail an epithelial subset that is remarkably similar to peripheral tuft cells that are found at mucosal barriers3. Similar to the periphery, thymic tuft cells express the canonical taste transduction pathway and IL-25. However, they are unique in their spatial association with cornified aggregates, ability to present antigens and expression of a broad diversity of taste receptors. Some thymic tuft cells pass through an Aire-expressing stage and depend on a known AIRE-binding partner, HIPK2, for their development. Notably, the taste chemosensory protein TRPM5 is required for their thymic function through which they support the development and polarization of thymic invariant natural killer T cells and act to establish a medullary microenvironment that is enriched in the type 2 cytokine, IL-4. These findings indicate that there is a compartmentalized medullary environment in which differentiation of a minor and highly specialized epithelial subset has a non-redundant role in shaping thymic function.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Interleukin-4/metabolism , Thymocytes/cytology , Thymus Gland/cytology , Thymus Gland/metabolism , Animals , Cellular Microenvironment , Doublecortin-Like Kinases , Female , Humans , Immune Tolerance/immunology , Interleukin-4/biosynthesis , Interleukins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , TRPM Cation Channels/metabolism , Thymocytes/metabolism , Thymus Gland/anatomy & histology , Transcription Factors/deficiency , Transcription Factors/genetics , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...