Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 14(11): 1524-1530, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37974942

ABSTRACT

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts, no new antibiotic class with activity against Gram-negative bacteria has been approved in over 50 years. LepB inhibitors (LepBi) based on the arylomycin class of natural products are a novel class of antibiotics and function by inhibiting the bacterial type I signal peptidase (SPase) in Gram-negative bacteria. One critical aspect of LepBi development involves optimization of the membrane-anchored lipophilic portion of the molecule. We therefore developed an approach that assesses the effect of this portion on the complicated equilibria of plasma protein binding, crossing the outer membrane of Gram-negative bacteria and anchoring in the bacterial inner membrane to facilitate SPase binding. Our findings provide important insights into the development of antibacterial agents where the target is associated with the inner membrane of Gram-negative bacteria.

2.
ACS Med Chem Lett ; 8(1): 84-89, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28105280

ABSTRACT

The N-methyl-d-aspartate receptor (NMDAR) is an ionotropic glutamate receptor, gated by the endogenous coagonists glutamate and glycine, permeable to Ca2+ and Na+. NMDAR dysfunction is associated with numerous neurological and psychiatric disorders, including schizophrenia, depression, and Alzheimer's disease. Recently, we have disclosed GNE-0723 (1), a GluN2A subunit-selective and brain-penetrant positive allosteric modulator (PAM) of NMDARs. This work highlights the discovery of a related pyridopyrimidinone core with distinct structure-activity relationships, despite the structural similarity to GNE-0723. GNE-5729 (13), a pyridopyrimidinone-based NMDAR PAM, was identified with both an improved pharmacokinetic profile and increased selectivity against AMPARs. We also include X-ray structure analysis and modeling to propose hypotheses for the activity and selectivity differences.

3.
J Med Chem ; 59(6): 2760-79, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26919761

ABSTRACT

The N-methyl-D-aspartate receptor (NMDAR) is a Na(+) and Ca(2+) permeable ionotropic glutamate receptor that is activated by the coagonists glycine and glutamate. NMDARs are critical to synaptic signaling and plasticity, and their dysfunction has been implicated in a number of neurological disorders, including schizophrenia, depression, and Alzheimer's disease. Herein we describe the discovery of potent GluN2A-selective NMDAR positive allosteric modulators (PAMs) starting from a high-throughput screening hit. Using structure-based design, we sought to increase potency at the GluN2A subtype, while improving selectivity against related α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). The structure-activity relationship of channel deactivation kinetics was studied using a combination of electrophysiology and protein crystallography. Effective incorporation of these strategies resulted in the discovery of GNE-0723 (46), a highly potent and brain penetrant GluN2A-selective NMDAR PAM suitable for in vivo characterization.


Subject(s)
Excitatory Amino Acid Antagonists/chemical synthesis , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/drug effects , Animals , CHO Cells , Calcium/metabolism , Cricetinae , Cricetulus , Crystallography, X-Ray , Drug Discovery , HEK293 Cells , High-Throughput Screening Assays , Humans , Kinetics , Models, Molecular , Patch-Clamp Techniques , Receptors, AMPA/drug effects , Structure-Activity Relationship
4.
J Med Chem ; 58(1): 401-18, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25341110

ABSTRACT

Dual leucine zipper kinase (DLK, MAP3K12) was recently identified as an essential regulator of neuronal degeneration in multiple contexts. Here we describe the generation of potent and selective DLK inhibitors starting from a high-throughput screening hit. Using proposed hinge-binding interactions to infer a binding mode and specific design parameters to optimize for CNS druglike molecules, we came to focus on the di(pyridin-2-yl)amines because of their combination of desirable potency and good brain penetration following oral dosing. Our lead inhibitor GNE-3511 (26) displayed concentration-dependent protection of neurons from degeneration in vitro and demonstrated dose-dependent activity in two different animal models of disease. These results suggest that specific pharmacological inhibition of DLK may have therapeutic potential in multiple indications.


Subject(s)
MAP Kinase Kinase Kinases/antagonists & inhibitors , Nerve Degeneration/prevention & control , Neurodegenerative Diseases/prevention & control , Protein Kinase Inhibitors/pharmacology , Animals , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Mice, Inbred C57BL , Models, Chemical , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats
5.
ChemMedChem ; 9(1): 73-7, 2, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24259468

ABSTRACT

Although they represent attractive therapeutic targets, caspases have so far proven recalcitrant to the development of drugs targeting the active site. Allosteric modulation of caspase activity is an alternate strategy that potentially avoids the need for anionic and electrophilic functionality present in most active-site inhibitors. Caspase-6 has been implicated in neurodegenerative disease, including Huntington's and Alzheimer's diseases. Herein we describe a fragment-based lead discovery effort focused on caspase-6 in its active and zymogen forms. Fragments were identified for procaspase-6 using surface plasmon resonance methods and subsequently shown by X-ray crystallography to bind a putative allosteric site at the dimer interface. A fragment-merging strategy was employed to produce nanomolar-affinity ligands that contact residues in the L2 loop at the dimer interface, significantly stabilizing procaspase-6. Because rearrangement of the L2 loop is required for caspase-6 activation, our results suggest a strategy for the allosteric control of caspase activation with drug-like small molecules.


Subject(s)
Caspase 6/metabolism , Small Molecule Libraries/chemistry , Allosteric Site , Binding Sites , Caspase 6/chemistry , Crystallography, X-Ray , Dimerization , Drug Design , Enzyme Precursors/chemistry , Enzyme Precursors/metabolism , Hydrogen-Ion Concentration , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , Small Molecule Libraries/metabolism , Transition Temperature
6.
PLoS One ; 7(12): e50864, 2012.
Article in English | MEDLINE | ID: mdl-23227217

ABSTRACT

Inhibition of caspase-6 is a potential therapeutic strategy for some neurodegenerative diseases, but it has been difficult to develop selective inhibitors against caspases. We report the discovery and characterization of a potent inhibitor of caspase-6 that acts by an uncompetitive binding mode that is an unprecedented mechanism of inhibition against this target class. Biochemical assays demonstrate that, while exquisitely selective for caspase-6 over caspase-3 and -7, the compound's inhibitory activity is also dependent on the amino acid sequence and P1' character of the peptide substrate. The crystal structure of the ternary complex of caspase-6, substrate-mimetic and an 11 nM inhibitor reveals the molecular basis of inhibition. The general strategy to develop uncompetitive inhibitors together with the unique mechanism described herein provides a rationale for engineering caspase selectivity.


Subject(s)
Caspase 6/metabolism , Caspase Inhibitors/chemistry , Caspase Inhibitors/pharmacology , Amino Acid Sequence , Caspase 6/chemistry , Caspase Inhibitors/analysis , Crystallography, X-Ray , Drug Evaluation, Preclinical , Kinetics , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Binding/drug effects , Reproducibility of Results , Substrate Specificity/drug effects , Surface Plasmon Resonance
7.
J Med Chem ; 54(9): 3426-35, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21495671

ABSTRACT

A series of inhibitors of mTOR kinase based on a quaternary-substituted dihydrofuropyrimidine was designed and synthesized. The most potent compounds in this series inhibited mTOR kinase with K(i) < 1.0 nM and were highly (>100×) selective for mTOR over the closely related PI3 kinases. Compounds in this series showed inhibition of the pathway and antiproliferative activity in cell-based assays. Furthermore, these compounds had excellent mouse PK, and showed a robust PK-PD relationship in a mouse model of cancer.


Subject(s)
Antineoplastic Agents/chemical synthesis , Furans/chemical synthesis , Pyrimidines/chemical synthesis , TOR Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Stability , Furans/pharmacokinetics , Furans/pharmacology , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Phosphoinositide-3 Kinase Inhibitors , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Species Specificity , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous
8.
Bioorg Med Chem Lett ; 20(7): 2229-33, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20189383

ABSTRACT

A series of IAP antagonists based on thiazole or benzothiazole amide isosteres was designed and synthesized. These compounds were tested for binding to the XIAP-BIR3 and ML-IAP BIR using a fluorescence polarization assay. The most potent of these compounds, 19a and 33b, were found to have K(i)'s of 20-30 nM against ML-IAP and 50-60 nM against XIAP-BIR3.


Subject(s)
Amides/chemistry , Amides/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Peptides/chemistry , Thiazoles/chemistry , Thiazoles/pharmacology , Binding Sites , Biomimetics , Crystallography, X-Ray , Humans , Inhibitor of Apoptosis Proteins/metabolism , Models, Molecular , Peptides/metabolism
9.
J Comb Chem ; 6(4): 564-72, 2004.
Article in English | MEDLINE | ID: mdl-15244418

ABSTRACT

The solid-phase synthesis of 1,2,3,4-tetrahydroisoquinoline-3-carboxamides employing carboxyl-supported, o-alkylated tyrosine esters in a Pictet-Spengler reaction is described. Esterification of [4-(hydroxyphenyl)thiomethyl]polystyrene (Marshall resin) with ethers of N-BOC-L-tyrosine using diisopropylcarbodiimide (DIC) and 4-dimethylaminopyridine (4-DMAP) afforded the solid-supported ester derivatives. Removal of the BOC group with trifluoroacetic acid (TFA) afforded the carboxyl-supported tyrosine ester, which was then treated with paraformaldehyde and TFA to afford the desired solid-supported counterpart. Acylation of the secondary amine with arylsulfonyl chlorides followed by reaction with amines resulted in the formation of the desired 2-arylsulfonyl-7-alkoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxamides. Alternatively, the support-bound tetrahydroisoquinoline-3-carboxylate derivatives could be treated with an aldehyde and a reducing agent to give the corresponding support-bound tertiary amine. Exposure of these resin-bound products to amines afforded the corresponding 2-alkyl-7-alkoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxamides after cleavage from the resin. Alternative routes to the desired chemotypes, as well optimization of the conditions for the Pictet-Spengler reaction and the conditions for the acylation and reductive amination of the support-bound secondary amines, are also described.

SELECTION OF CITATIONS
SEARCH DETAIL
...