Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 192, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635318

ABSTRACT

Choice information appears in multi-area brain networks mixed with sensory, motor, and cognitive variables. In the posterior cortex-traditionally implicated in decision computations-the presence, strength, and area specificity of choice signals are highly variable, limiting a cohesive understanding of their computational significance. Examining the mesoscale activity in the mouse posterior cortex during a visual task, we found that choice signals defined a decision variable in a low-dimensional embedding space with a prominent contribution along the ventral visual stream. Their subspace was near-orthogonal to concurrently represented sensory and motor-related activations, with modulations by task difficulty and by the animals' attention state. A recurrent neural network trained with animals' choices revealed an equivalent decision variable whose context-dependent dynamics agreed with that of the neural data. Our results demonstrated an independent, multi-area decision variable in the posterior cortex, controlled by task features and cognitive demands, possibly linked to contextual inference computations in dynamic animal-environment interactions.


Subject(s)
Cerebral Cortex , Decision Making , Animals , Mice , Neural Networks, Computer , Choice Behavior
2.
Cell Rep ; 36(2): 109377, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260937

ABSTRACT

Visually guided behaviors depend on the activity of cortical networks receiving visual inputs and transforming these signals to guide appropriate actions. However, non-retinal inputs, carrying motor signals as well as cognitive and attentional modulatory signals, also activate these cortical regions. How these networks integrate coincident signals ensuring reliable visual behaviors is poorly understood. In this study, we observe neural responses in the dorsal-parietal cortex of mice during a visual discrimination task driven by visual stimuli and movements. We find that visual and motor signals interact according to two mechanisms: divisive normalization and separation of responses. Interactions are contextually modulated by the animal's state of sustained attention, which amplifies visual and motor signals and increases their discriminability in a low-dimensional space of neural activations. These findings reveal computational principles operating in dorsal-parietal networks that enable separation of incoming signals for reliable visually guided behaviors during interactions with the environment.


Subject(s)
Attention/physiology , Motor Activity/physiology , Sensation/physiology , Visual Cortex/physiology , Animals , Behavior, Animal , Discrimination, Psychological , Mice, Inbred C57BL , Movement/physiology , Neurons/physiology , Nonlinear Dynamics
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301903

ABSTRACT

During perceptual decision-making, the brain encodes the upcoming decision and the stimulus information in a mixed representation. Paradigms suitable for studying decision computations in isolation rely on stimulus comparisons, with choices depending on relative rather than absolute properties of the stimuli. The adoption of tasks requiring relative perceptual judgments in mice would be advantageous in view of the powerful tools available for the dissection of brain circuits. However, whether and how mice can perform a relative visual discrimination task has not yet been fully established. Here, we show that mice can solve a complex orientation discrimination task in which the choices are decoupled from the orientation of individual stimuli. Moreover, we demonstrate a typical discrimination acuity of 9°, challenging the common belief that mice are poor visual discriminators. We reached these conclusions by introducing a probabilistic choice model that explained behavioral strategies in 40 mice and demonstrated that the circularity of the stimulus space is an additional source of choice variability for trials with fixed difficulty. Furthermore, history biases in the model changed with task engagement, demonstrating behavioral sensitivity to the availability of cognitive resources. In conclusion, our results reveal that mice adopt a diverse set of strategies in a task that decouples decision-relevant information from stimulus-specific information, thus demonstrating their usefulness as an animal model for studying neural representations of relative categories in perceptual decision-making research.


Subject(s)
Decision Making , Orientation, Spatial , Animals , Mice
4.
J Neurosci ; 35(21): 8065-80, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26019325

ABSTRACT

Signal and noise correlations, a prominent feature of cortical activity, reflect the structure and function of networks during sensory processing. However, in addition to reflecting network properties, correlations are also shaped by intrinsic neuronal mechanisms. Here we show that spike threshold transforms correlations by creating nonlinear interactions between signal and noise inputs; even when input noise correlation is constant, spiking noise correlation varies with both the strength and correlation of signal inputs. We characterize these effects systematically in vitro in mice and demonstrate their impact on sensory processing in vivo in gerbils. We also find that the effects of nonlinear correlation transfer on cortical responses are stronger in the synchronized state than in the desynchronized state, and show that they can be reproduced and understood in a model with a simple threshold nonlinearity. Since these effects arise from an intrinsic neuronal property, they are likely to be present across sensory systems and, thus, our results are a critical step toward a general understanding of how correlated spiking relates to the structure and function of cortical networks.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/physiology , Nerve Net/physiology , Noise , Nonlinear Dynamics , Acoustic Stimulation/methods , Animals , Gerbillinae , Male , Mice , Mice, Inbred C57BL
5.
J Neurosci ; 35(5): 2058-73, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25653363

ABSTRACT

Sensory function is mediated by interactions between external stimuli and intrinsic cortical dynamics that are evident in the modulation of evoked responses by cortical state. A number of recent studies across different modalities have demonstrated that the patterns of activity in neuronal populations can vary strongly between synchronized and desynchronized cortical states, i.e., in the presence or absence of intrinsically generated up and down states. Here we investigated the impact of cortical state on the population coding of tones and speech in the primary auditory cortex (A1) of gerbils, and found that responses were qualitatively different in synchronized and desynchronized cortical states. Activity in synchronized A1 was only weakly modulated by sensory input, and the spike patterns evoked by tones and speech were unreliable and constrained to a small range of patterns. In contrast, responses to tones and speech in desynchronized A1 were temporally precise and reliable across trials, and different speech tokens evoked diverse spike patterns with extremely weak noise correlations, allowing responses to be decoded with nearly perfect accuracy. Restricting the analysis of synchronized A1 to activity within up states yielded similar results, suggesting that up states are not equivalent to brief periods of desynchronization. These findings demonstrate that the representational capacity of A1 depends strongly on cortical state, and suggest that cortical state should be considered as an explicit variable in all studies of sensory processing.


Subject(s)
Auditory Cortex/physiology , Evoked Potentials, Auditory , Animals , Auditory Cortex/cytology , Cortical Synchronization , Gerbillinae , Male , Neurons/physiology
6.
J Neurosci ; 34(50): 16796-808, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25505332

ABSTRACT

Interaural time differences (ITDs) are the dominant cue for the localization of low-frequency sounds. While much is known about the processing of ITDs in the auditory brainstem and midbrain, there have been relatively few studies of ITD processing in auditory cortex. In this study, we compared the neural representation of ITDs in the inferior colliculus (IC) and primary auditory cortex (A1) of gerbils. Our IC results were largely consistent with previous studies, with most cells responding maximally to ITDs that correspond to the contralateral edge of the physiological range. In A1, however, we found that preferred ITDs were distributed evenly throughout the physiological range without any contralateral bias. This difference in the distribution of preferred ITDs in IC and A1 had a major impact on the coding of ITDs at the population level: while a labeled-line decoder that considered the tuning of individual cells performed well on both IC and A1 responses, a two-channel decoder based on the overall activity in each hemisphere performed poorly on A1 responses relative to either labeled-line decoding of A1 responses or two-channel decoding of IC responses. These results suggest that the neural representation of ITDs in gerbils is transformed from IC to A1 and have important implications for how spatial location may be combined with other acoustic features for the analysis of complex auditory scenes.


Subject(s)
Auditory Cortex/physiology , Auditory Pathways/physiology , Mesencephalon/physiology , Neurons/physiology , Sound Localization/physiology , Acoustic Stimulation/methods , Animals , Gerbillinae , Male , Time Factors
7.
Network ; 23(1-2): 76-103, 2012.
Article in English | MEDLINE | ID: mdl-22578115

ABSTRACT

As multi-electrode and imaging technology begin to provide us with simultaneous recordings of large neuronal populations, new methods for modelling such data must also be developed. We present a model of responses to repeated trials of a sensory stimulus based on thresholded Gaussian processes that allows for analysis and modelling of variability and covariability of population spike trains across multiple time scales. The model framework can be used to specify the values of many different variability measures including spike timing precision across trials, coefficient of variation of the interspike interval distribution, and Fano factor of spike counts for individual neurons, as well as signal and noise correlations and correlations of spike counts across multiple neurons. Using both simulated data and data from different stages of the mammalian auditory pathway, we demonstrate the range of possible independent manipulations of different variability measures, and explore how this range depends on the sensory stimulus. The model provides a powerful framework for the study of experimental and surrogate data and for analyzing dependencies between different statistical properties of neuronal populations.


Subject(s)
Neural Networks, Computer , Algorithms , Animals , Auditory Pathways/anatomy & histology , Computer Simulation , Data Interpretation, Statistical , Excitatory Postsynaptic Potentials/physiology , Humans , Image Processing, Computer-Assisted/methods , Models, Neurological , Models, Statistical , Neuroimaging/statistics & numerical data , Neurons/physiology , Normal Distribution , Signal-To-Noise Ratio , Time Factors
8.
Front Comput Neurosci ; 4: 144, 2010.
Article in English | MEDLINE | ID: mdl-21152346

ABSTRACT

As multi-electrode and imaging technology begin to provide us with simultaneous recordings of large neuronal populations, new methods for modeling such data must also be developed. Here, we present a model for the type of data commonly recorded in early sensory pathways: responses to repeated trials of a sensory stimulus in which each neuron has it own time-varying spike rate (as described by its PSTH) and the dependencies between cells are characterized by both signal and noise correlations. This model is an extension of previous attempts to model population spike trains designed to control only the total correlation between cells. In our model, the response of each cell is represented as a binary vector given by the dichotomized sum of a deterministic "signal" that is repeated on each trial and a Gaussian random "noise" that is different on each trial. This model allows the simulation of population spike trains with PSTHs, trial-to-trial variability, and pairwise correlations that match those measured experimentally. Furthermore, the model also allows the noise correlations in the spike trains to be manipulated independently of the signal correlations and single-cell properties. To demonstrate the utility of the model, we use it to simulate and manipulate experimental responses from the mammalian auditory and visual systems. We also present a general form of the model in which both the signal and noise are Gaussian random processes, allowing the mean spike rate, trial-to-trial variability, and pairwise signal and noise correlations to be specified independently. Together, these methods for modeling spike trains comprise a potentially powerful set of tools for both theorists and experimentalists studying population responses in sensory systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...