Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
EJNMMI Res ; 14(1): 63, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976101

ABSTRACT

BACKGROUND: Positron emission tomography (PET) is now an established diagnostic method for myocardial perfusion imaging (MPI) in coronary artery disease, which is the main cause of death globally. The available tracers show several limitations, therefore, the 18F-labelled tracer is in high demand nowadays. The preclinical studies on normal Wistar rats aimed to characterise two potential, novel radiotracers, [18F]SYN1 and [18F]SYN2, to evaluate which is a better candidate for PET MPI cardiotracer. RESULTS: The dynamic microPET images showed rapid myocardial uptake for both tracers. However, the uptake was higher and also stable for [18F]SYN2, with an average standardized uptake value of 3.8. The biodistribution studies confirmed that [18F]SYN2 uptake in the cardiac muscle was high and stable (3.02%ID/g at 15 min and 2.79%ID/g at 6 h) compared to [18F]SYN1 (1.84%ID/g at 15 min and 0.32%ID/g at 6 h). The critical organs determined in dosimetry studies were the small intestine and the kidneys. The estimated effective dose for humans was 0.00714 mSv/MBq for [18F]SYN1 and 0.0109 mSv/MBq for [18F]SYN2. The tested dose level of 2 mg/kg was considered to be the No Observed Adverse Effect Level (NOAEL) for both candidates. The better results were achieved for [18F]SYN2, therefore, further preclinical studies were conducted only for this tracer. Radioligand binding assays showed significant responses in 3 from 68 assays: muscarinic acetylcholine M1 and M2 receptors and potassium channel hERG. The compound was mostly metabolised via an oxidative N-dealkylation, while the fluor substituent was not separated from the molecule. CONCLUSION: [18F]SYN2 showed a favourable pharmacodynamic and pharmacokinetic profile, which enabled a clear visualization of the heart in microPET. The compound was well-tolerated in studies in normal rats with moderate radiation exposure. The results encourage further exploration of [18F]SYN2 in clinical studies.

2.
RSC Adv ; 14(25): 18080-18092, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38841398

ABSTRACT

Twelve tricarbonyl rhenium(i) complexes in the '2 + 1' system with the anionic bidentate N,O-donor ligand (deprotonated 8-hydroxyquinoline (HQ) or its 2-methyl (MeHQ) or 5-chloro (ClHQ) derivative) and neutral N-donor diazoles (imidazole (Him), 2-methylimidazole (MeHim), 3,5-dimethylpyrazole (Hdmpz), and 3-phenylpyrazole (HPhpz)) were synthesized: [Re(CO)3(LN,O)LN] (LN,O = Q-, MeQ-, ClQ-; LN = Him, MeHim, Hdmpz, HPhpz). Their crystal structures were determined by the scXRD method, compared with the DFT-calculated ones, and characterized by analytical (EA) and spectroscopic techniques (FT-IR, NMR, and UV-Vis) interpreted with DFT and TD-DFT calculations. Most of the Re(i) complexes did not show relevant antibacterial activity against Gram-negative and Gram-positive bacterial strains. Only [Re(CO)3(MeQ)Him] demonstrated significant action 4-fold better against Gram-negative Pseudomonas aeruginosa than the free MeHQ ligand. The cytotoxicity of the compounds was estimated using human acute promyelocytic leukemia (HL-60), ovarian (SKOV-3), prostate (PC-3), and breast (MCF-7) cancer, and breast non-cancerous (MCF-10A) cell lines. Only HQ and ClHQ ligands and [Re(CO)3(Q)Hdmpz] complex had good selectivity toward MCF-7 cell line. HL-60 cells were sensitive to all complexes (IC50 = 1.5-14 µM). Still, pure HQ and ClHQ ligands were slightly more active than the complexes.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123939, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38301569

ABSTRACT

The VCD spectra of chiral 2,3-dihydro-1H-benzo[de]isoquinolin-1-one (8-substituted naphthalene-1-carboxamide, BIQ) were studied in KBr pellets. The X-ray diffractometry revealed that the Me, Ph, and pClPh BIQs crystalize in the monoclinic P21, while nBu, pMePh, and oMeOPh BIQs in the orthorhombic P212121 space group. Only the Me-BIQ crystal exhibits the presence of cyclic amide dimers, while the others contain chains of the amid group hydrogen bonds. For all BIQs, except pMePh, the most intense IR band in the 1750-1550 cm-1 region is located at ca. 1680 cm-1 and is accompanied by two weak ones at ca. 1618 and 1590 cm-1. For the pMePh derivative, four almost equally intense IR bands at 1662, 1639, 1614, and 1588 cm-1 are observed. This region of the IR spectra of BIQs, but pMePh, is well reproduced by calculations based on BIQ monomers. On the other hand, the complex IR pattern of pMePh is computationally reproduced when larger crystal fragments, like octamers, are considered. Registration of the VCD spectra enabled recognizing the complexity of IR contours at ca. 1680 cm-1 by the corresponding VCD motives. For (i) Me, Ph and pClPh (R)-enantiomers, two (+)(-) bands were distinguished and for (ii) nBu and pMePh ones, one VCD band with right-side asymmetry was found. For (iii) oMeOPh the VCD pattern cannot be unambiguously assigned. Thus, the VCD spectra in the ν(C=O) range diverse the studied compounds. Among the set of molecules, pMePh has exceptional crystal geometry. Therefore, its most intense ν(C=O) band position and shape can be connected with the geometry of the hydrogen bonds, interactions, and crystal packing. Interpretation of the VCD spectra is based on linear and packed BIQ octamers. This cluster model can reproduce the main features of the solid-state VCD of BIQs.

4.
Dalton Trans ; 53(4): 1817-1832, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38173416

ABSTRACT

Crystallographic investigations of eight homoleptic N,N'-dimethylpropyleneurea (dmpu) coordinated metal ions in the solid state, [Mg(dmpu)5]I2 (1), [Ca(dmpu)6]I2 (2), [Ca(dmpu)6](ClO4)2 (3), [Ca(dmpu)6](CF3SO3)2 (4), [Sr(dmpu)6](CF3SO3)2 (5), [Ba(dmpu)6](CF3SO3)2 (6), [Sc(dmpu)6]I3 (7), and [Pr(dmpu)6]I(I3)2 (8), and the complex [CoBr2(dmpu)2] (9) as well as the structures of the dmpu coordinated calcium, strontium, barium, scandium(III) and cobalt(II) ions and the cobalt(II) bromide complex in dmpu solution as determined by EXAFS are reported. The methyl groups in the dmpu molecule are close to the oxygen donor atom, causing steric restrictions, and making dmpu space-demanding at coordination to metal ions. The large volume required by the dmpu ligand at coordination contributes to crowdedness around the metal ion with often lower coordination numbers than for oxygen donor ligands without such steric restrictions. The crowdedness is seen in M⋯H distances equal to or close to the sum of the van der Waals radii. To counteract the space-demand at coordination, the dmpu molecule has an unusual ability to increase the M-O-C bond angle to facilitate as large coordination numbers as possible. M-O-C bond angles in the range of 125-170° are reported depending on the crowdedness caused by the coordination figure and the M-O bond distance. All reported structures of dmpu coordinated metal ions in both the solid state and dmpu solution are summarized to study the relationship between the M-O-C bond angle and the crowdedness around the metal ion. However, highly symmetric complexes seem to be favoured in the solid state due to favourable lattice energies. As a result, the dmpu coordinated lanthanoid(III) ions are octahedral in the solid state, while they, except lutetium, are seven-coordinate in the dmpu solution.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122089, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36436264

ABSTRACT

The UV-vis and ECD spectroelectrochemistry (SEC) of a chiral binaphthalenylamine derivative of the N-butyl naphthalenediimide (NDIB-NH2) enantiomers were applied to measure UV-vis and ECD spectra of NDIB-NH2 radicals and dianion formed in the reduction and oxidation processes observed in cyclic voltammetry (CV). The CV curves and EPR spectroelectrochemistry enabled us to establish conditions at which a radical-anion [NDIB-NH2]̇.-, a dianion [NDIB-NH2]2-, and a radical-cation [NDIB-NH2]̇.+ are formed. The DFT restricted open-shell CAM-B3LYP-D3/def2TZVP/PCM calculations demonstrated that in the radical-anion [NDIB-NH2]̇.-, spin is spread over the NDI system while in the radical-cation [NDIB-NH2]̇+ it is spread over the aminonaphthalene moiety. The UV-vis spectra of radical-anion and dianion show the most significant changes in the 400-800 nm range. In that range, the ECD spectra varied with the change of electrode potential more than the UV-vis did and enabled the identification of a new ECD band of [NDIB-NH2]̇.- at ca. 400 nm hidden in the background in the UV spectra at -1000 mV. A broad structured ECD pattern with a maximum at ca. 530 nm was observed for [NDIB-NH2]̇.- (-1000 mV), while a single smooth ECD band of [NDIB-NH2]2- was located at 520 nm (-1750 mV). For the first time, an isosbestic point (455 nm) was found in ECD spectroelectrochemical measurements for the radical-cation [NDIB-NH2]̇.+ in equilibrium with the NDIB-NH2 neutral form. The TD-DFT CAM-B3LYP-D3/6-31G** calculations combined with the hybrid (explicit combined with implicit) solvation model fairly well reproduced the UV-vis and ECD SEC of neutral and redox forms of NDIB-NH2 but the ECD spectrum of [NDIB-NH2]̇.+ above 390 nm.


Subject(s)
Density Functional Theory , Oxidation-Reduction , Anions , Cations
6.
Chem Commun (Camb) ; 58(28): 4524-4527, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35302568

ABSTRACT

In this study, we found that a recently discovered ECD-Raman effect dominated over the natural Raman optical activity in a series of atropisomeric naphthalenediimides, and we investigated the kind of information about the molecular structure that could be obtained from the spectra. The ECD-Raman effect is polarised Raman scattering modulated by electronic circular dichroism. We showed that the spectra significantly depended on the substitution of the solute and/or the change of the solvent. Moreover, the spectra could be well-predicted by the theory, thus providing an interesting tool to monitor the chirality of the binaphthyl compounds.


Subject(s)
Spectrum Analysis, Raman , Circular Dichroism , Molecular Structure , Solutions , Solvents/chemistry
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120761, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34954483

ABSTRACT

A novel N-acylhydrazone with pharmaceutical importance was subject of structural and IR/VCD investigations in the solid state. In the crystal structure, dimers of anion-cation pairs are stabilized by H-bonding and ionic interactions. Some less common interaction types, like C=N···C-NH3+ (σ-hole) interactions, hydrazone-aromatic interactions and dispersive contacts of the CF3 groups are also present in the crystal. Satisfactory reproduction of the solid state IR and VCD spectra required that quantum-chemical calculations be done on a tetramer (four cation-anion pairs) cut out from the crystal structure, exhibiting key intermolecular interactions. Ten DFT functionals were assessed as to the agreement between the calculated and experimental spectra. Various approaches to scaling of the calculated frequencies were applied. The best results were yielded with individual (optimized) frequency scaling factors (FSFs) and band half-widths at half maximum-(HWHM) for four separate spectral subregions. The best matching between the experimental and theoretical spectra (according to SimIR, SimVCD and SimVDF indices) was found for the B3PW91 functional, however, a few other functionals follow closely in the ranking. Based on the quantum chemical calculations, spectral assignments have been made.


Subject(s)
Trifluoroacetic Acid
8.
Molecules ; 27(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35011415

ABSTRACT

Synthesis, single-crystal X-ray determination diffraction and FT-IR, NMR (1H, 13C, 19F and 205Tl), UV-vis, and luminescence spectra characteristics were described for series of thallium(I) compounds: thallium(I) triflate (Tl(OTf)), 1:1 co-crystals of thallium(I) triflate and tropolone (Htrop), Tl(OTf)·Htrop, as well as simple thallium(I) chelates: Tl(trop) (1), Tl(5-metrop) (2), Tl(hino) (3), with Htrop, 5-methyltropolone (5-meHtrop), 4-isopropyltropolone (hinokitiol, Hhino), respectively, and additionally more complex {Tl@[Tl(hino)]6}(OTf) (4) compound. Comparison of their antimicrobial activity with selected lead(II) and bismuth(III) analogs and free ligands showed that only bismuth(III) complexes demonstrated significant antimicrobial activity, from two- to fivefold larger than the free ligands.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Thallium/chemistry , Tropolone/chemistry , Tropolone/pharmacology , Anti-Infective Agents/chemical synthesis , Bismuth/chemistry , Chemistry Techniques, Synthetic , Lead/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Molecular Structure , Spectrum Analysis , Structure-Activity Relationship , Tropolone/analogs & derivatives , Tropolone/chemical synthesis
9.
Dalton Trans ; 49(42): 14891-14907, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33075117

ABSTRACT

A rational approach was adopted to design high-potential metal-based antitumor agents. A series of organometallic Pd(ii) complexes with a general formula of [Pd{κ2(C,C)-[(C6H4-2)PPh2]CH(CO)C6H4Ph-4}{κ2(N,O)}] (N,O = alanine (Pd-A), valine (Pd-V), leucine (Pd-L), l-isoleucine (Pd-I) and phenylalanine (Pd-F)) were prepared by cyclopalladation of the phosphorus ylide, bridge cleavage reaction and subsequent chelation of natural α-amino acids. The complexes were fully identified using IR and multinuclear 1H, 13C, 31P NMR spectroscopic methods. X-ray crystallography exhibited that the Pd(ii) atom is located in a slightly distorted square-planar environment surrounded by C,C-orthometallated phosphorus ylide as well as NO-pendant amino acid functionality. In vitro cytotoxicity evaluation of new cyclometallated Pd(ii) complexes toward a human leukemia (K562) cancer cell line indicated promising results. The highest cytotoxic activity was discovered in the case of phenylalanine (CH2C6H5). IC50 values of this complex on a panel of human tumor cell lines representative of liver (HepG2), breast (SKBR-3), and ovarian (A2780-Resistance/Sensitive) cancers also indicated promising antitumor effects in comparison with standard cisplatin. The binding interaction ability of the phenylalanine-containing orthopalladated complex, as the most efficient compound, with calf-thymus deoxyribonucleic acid (CT-DNA) and bovine serum albumin (BSA) was investigated. UV-Vis spectroscopy, competitive emission titration, and circular dichroism (CD) techniques demonstrated the intercalative binding of the Pd(ii) complex with DNA. Molecular docking studies also fully agreed with the experimental data. Examination of the reactivity towards the protein BSA revealed that the static quenching mechanism of BSA intrinsic fluorescence by the Pd(ii) complex with a binding constant (Kb) of ∼105 is indicative of the high affinity of the complex. The competitive binding experiment using site markers with definite binding sites demonstrated that the hydrophobic cavities of site I (subdomain IIA) are responsible for the bimolecular interaction between protein BSA and the complex. Molecular docking studies effectively confirmed the significance of hydrophobic interactions in Pd(ii)-BSA binding. The results of this study could greatly contribute to exploring new potent metal-based anticancer drugs.


Subject(s)
Amino Acids/chemistry , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Palladium/chemistry , Serum Albumin, Bovine/chemistry , Alanine/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cell Survival , Coordination Complexes/pharmacology , DNA/chemistry , Drug Development , Humans , Intercalating Agents , Isoleucine/chemistry , Leucine/chemistry , Molecular Conformation , Phenylalanine/chemistry , Protein Binding , Structure-Activity Relationship , Valine/chemistry
10.
Biosens Bioelectron ; 167: 112446, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32818748

ABSTRACT

Fast, simple in use and highly effective voltammetric enantiosensor dedicated for determination of thalidomide (TD) enantiomers (especially towards the toxic (S)-enantiomer) in blood plasma is still desirable. Here we have proven that newly synthesized chiral naphthalene diimide (NDI) derivatives are excellent electroactive materials for TD enantiosensors. The recognition process relies on the specific interaction between the chiral NDI receptor and the thalidomide enantiomer of the opposite configuration. This unique specific interaction between (S)-thalidomide and (R)-NDI derivative counterparts, evident in the DPV voltammograms, was confirmed by molecular modeling. The demonstrated voltammetric enantiosensors are characterized by the low detection limit at the level of µg·L-1, wide analytical range from 5·10-4 - 10 mg·L-1, high selectivity and long lifetime. The results of the recovery rates showed a very good degree of accuracy towards the determination of (S)-thalidomide in the blood samples, so it can be successfully used in the analysis of clinical samples.


Subject(s)
Biosensing Techniques , Thalidomide , Imides , Naphthalenes , Plasma , Stereoisomerism
11.
Molecules ; 25(12)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545530

ABSTRACT

A whole series of [Ln(H2O)4(Ala)2]26+ dimeric cationic lanthanide complexes with both L- and D-alanine enantiomers was synthesized. The single-crystal X-ray diffraction at 100 and 292 K shows the formation of two types of dimers (I and II) in crystals. Between the dimer centers, the alanine molecules behave as bridging (µ2-O,O'-) and chelating bridging (µ2-O,O,O'-) ligands. The first type of bridge is present in dimers I, while both bridge forms can be observed in dimers II. The IR and vibrational circular dichroism (VCD) spectra of all L- and D-alanine complexes were registered in the 1750-1250 cm-1 range as KBr pellets. Despite all the studied complexes are exhibiting similar crystal structures, the spectra reveal correlations or trends with the Ln-O1 distances which exemplify the lanthanide contraction effect in the IR spectra. This is especially true for the positions and intensities of some IR bands. Unexpectedly, the ν(C=O) VCD bands are quite intense and their composed shapes reveal the inequivalence of the C=O vibrators in the unit cell which vary with the lanthanide. Unlike in the IR spectra, the ν(C=O) VCD band positions are only weakly correlated with the change of Ln and the VCD intensities at most show some trends. Nevertheless, this is the first observation of the lanthanide contraction effect in the VCD spectra. Generally, for the heavier lanthanides (Ln: Dy-Lu), the VCD band maxima are very close to each other and the mirror reflection of the band of two enantiomers is usually better than that of the lighter Lns. DFT calculations show that the higher the multiplicity the higher the stability of the system. Actually, the molecular geometry in crystals (at 100 K) is well predicted based on the highest-spin structures. Also, the simulated IR and VCD spectra strongly depend on the Ln electron configuration but the best overall agreement was reached for the Lu complex, which is the only system with a fully filled f-shell.


Subject(s)
Alanine/chemistry , Lanthanoid Series Elements/chemistry , Circular Dichroism , Crystallography, X-Ray/methods , Dimerization , Electrons , Ligands , Models, Molecular , Spectrophotometry, Infrared , Stereoisomerism , Water/chemistry , X-Ray Diffraction/methods , X-Rays
12.
Molecules ; 24(21)2019 Oct 26.
Article in English | MEDLINE | ID: mdl-31717768

ABSTRACT

A new group of arsenic(III) complexes with bidentate S,S-donor ligands, 1,2-benzenedithiol (Ph(SH)2) and toluene-3,4-dithiol (MePh(SH)2), were synthesized. The use of arsenic(III) iodide and bromide promoted the formation of neutral complexes (1-4) with the general formula AsX(LS2) (X = I or Br, L = MePh or Ph). The crystal structures of these compounds were determined using single-crystal X-ray diffraction (scXRD). Unlike other arsenic(III) complexes, AsBr(PhS2) complex (2) was found to crystallize with a rare 13 molecules in the asymmetric unit. The compounds were also characterized by conventional physico-chemical techniques (Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, nuclear magnetic resonance (NMR), high-performance liquid chromatography (HPLC), elemental analysis (EA) and electrospray ionization-mass spectrometry (ESI-MS)). The results from structural and spectroscopic studies were supported by DFT calculations using the B3LYP/LANL2DZ and (or) 6-31+G(d,p) approaches. The cytotoxicity of these complexes was estimated for human acute promyelocytic leukemia cell line (NB4). They exhibited remarkable cytotoxicities after 48 h of treatment with IC50 equal to about 10 µM and 40 µM for complexes with 1,2-benzenedithiolato and toluene-3,4-dithiolato ligand, respectively. Their toxicity was lower than that of commonly used chemotherapeutic As2O3 (IC50 = 1.4 µM).


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Sulfhydryl Compounds/chemistry , Toluene/chemistry , Anti-Infective Agents/chemistry , Biofilms/drug effects , Ciprofloxacin/pharmacology , Microscopy, Electron, Scanning , Spectrophotometry, Ultraviolet
13.
Chemphyschem ; 19(18): 2411-2422, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29776003

ABSTRACT

The IR and vibrational circular dichroism (VCD) spectra of both enantiomers of Me-, iPr-, nBu-, Ph-, and CH2 Ph-substituted isoindolinones in solution and KBr pellets were measured and interpreted by DFT calculations. The spectra in solution revealed no important differences in the C=O stretching vibration region while the interpretation of very distinct spectra taken in pellets required determining the crystal structures. The studied compounds crystallized in the P21 21 21 (Me, iPr, CH2 Ph), P31 (nBu), and P21 (Ph) space groups. We found that the quality of simulated spectra strongly depends on the substituent, the structure of the molecular cluster assumed, basis set, and use of the dispersion correction. The IR spectra can be reproduced well based on the simplest linear arrangement of hydrogen-bonded chains mimicking the molecular arrangement in the crystals. We found no common approach to reproduce all the registered VCD spectra in the crystal phase. For the Me and nBu isoindolinones, the VCD pattern was the best reproduced by full optimization of the selected large molecular clusters. For iPr, Ph and CH2 Ph derivatives optimizing only the position of H-atoms in a fragment frozen as in the crystal provides the best results. Such an approach can reduce the computation time from months to one week.

14.
J Phys Chem A ; 121(36): 6713-6726, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28777576

ABSTRACT

Two enantiomers of 2-methyl-N-(1-thien-2-ylethyl)propane-2-sulfonamide (TSA) were synthesized, and their VCD, ROA, IR, and Raman spectra were registered. The solved (S)-TSA X-ray structure shows a disorder connected to the presence of two TSA conformers differing by a slight rotation of the thiophene ring. Two molecules in the unit cell of the monoclinic P21 crystal form a net of NH···OS and C*H···OS hydrogen bonds. Out of a series of computational levels tested to interpret the spectra, the B3LYP functional combined with the def2TZVP basis set satisfactorily reproduces the experimental VCD and ROA spectra. To simulate the VCD spectra of TSA enantiomers in KBr pellets, dimers and tetramers, with two different positions of the thiophene ring, were considered. The VCD spectra measured in CDCl3 are completely different from those taken in KBr due to the conformational freedom of TSA in chloroform. Seven TSA conformers fall into two groups of opposite configurations at the pyramidal N atom forming the additional stereogenic center. However, the barriers between conformers in each group are lower than the energy of thermal motions at 300 K. Thus, all conformers, but the most stable in each group, are likely to be metastable states. The calculated IR, VCD, Raman, and ROA spectra of the conformers depend not only on the type of stereogenic N atom but also on the thiophene ring rotation. Yet, they are likely to coexist because of low barriers between them. Three approaches were tested to reproduce the chiroptical spectra in solution using PCM and hybrid solvation models. As a consequence, it was found that a model in which all conformers contribute to the spectra with equal population factors seems to best reproduce the experimental data. Such a result suggests that in a dissolved state in 300 K TSA occurs in a very shallow potential well and all of its conformers coexist.

15.
Nucl Med Biol ; 53: 1-8, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28683361

ABSTRACT

INTRODUCTION: The purposes of the present work were to label substance P (5-11) with 211At using a rhodium(III) complex with a bifunctional ligand-2-(1,5,9,13-tetrathiacyclohexadecan-3-yloxy)acetic acid ([16aneS4]-COOH) and to assess the in vitro stability and toxicity of the obtained radiobioconjugate. METHODS: Two approaches were evaluated to obtain 131I/211At-Rh[16aneS4]-SP5-11 radiobioconjugates, based on 2-step and 1-step syntheses. In the first method 131I/211At-Rh[16aneS4]-COOH complexes were obtained that required further coupling to a biomolecule. In the second approach, the bioconjugate [16aneS4]-SP5-11 was synthesized and further labeled with 131I and 211At through the utilization of a Rh(III) metal cation bridge. The synthesized compounds were analyzed by HPLC, TLC and paper electrophoresis. RESULTS: The 131I/211At-Rh[16aneS4]-COOH complexes were obtained in high yield and possessed good stability in PBS and CSF. Preliminary studies on coupling of 131I-Rh[16aneS4]-COOH to substance P (5-11) in 2-step synthesis showed that this procedure was too long with respect to 211At half-life, prompting us to improve it by finally using a 1-step synthesis. This strategy not only shortened the labeling time, but also increased final yield of 131I/211At-Rh[16aneS4]-SP5-11 radiobioconjugates. The stability of both compounds in PBS and CSF was high. Toxicity studies with the 211At-Rh[16aneS4]-SP5-11 demonstrated that radiobioconjugate significantly reduced T98G cell viability in a dose dependent manner reaching 20% of survival at the highest radioactivity 1200kBq/mL. CONCLUSIONS: The radiobioconjugate 211At-Rh[16aneS4]-SP5-11 revealed its potential in killing glioma T98G cells during in vitro studies; therefore further animal studies to are required to determine its in vivo stability and treatment potential in normal and xenografted mice.


Subject(s)
Astatine/therapeutic use , Glioma/drug therapy , Isotope Labeling , Peptide Fragments/therapeutic use , Radiopharmaceuticals/therapeutic use , Substance P/therapeutic use , Cell Line, Tumor , Glioma/pathology , Glioma/radiotherapy , Humans , Peptide Fragments/chemistry , Radiopharmaceuticals/chemistry , Substance P/chemistry
16.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 10): 1386-1389, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27746925

ABSTRACT

A new polymorph of the title compound, [Re(NCS)(C7H8N2O)(CO)3], crystallizing in the space group P21/n, has been obtained and structurally characterized by the experiment and DFT calculations. In this complex, the rhenium(I) cation is octa-hedrally coordinated by three carbonyl groups in a facial configuration, the N,O-bidentate N-methyl-pyridine-2-carboxamide ligand and the N-bonded thio-cyanate anion. Neighbouring mol-ecules are linked into a three-dimensional network by inter-molecular N-H⋯S and C-H⋯S inter-actions.

17.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 8): 895-8, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26396749

ABSTRACT

The structure of the title compound, [Al2(OH)2(C6H12N2O)6]I4·4C6H12N2O (systematic name: di-µ2-hydroxido-bis-{tris-[1,3-di-methyl-tetra-hydro-pyrimidin-2(1H)-one-κO]aluminium} tetra-iodide 1,3-di-methyl-tetra-hydro-pyrimidin-2(1H)-one tetra-solvate), is composed of two Al(C6H12N2O)3 moieties linked into a centrosymmetric dinuclear unit by a pair of bridging hydroxide ions. The aluminium cations show a distorted trigonal bipyramidal AlO5 coordination environment formed only by monodentate ligands. The Al-O bond lengths are in the range 1.789 (2)-1.859 (2) Š(mean bond length = 1.818 Å). The non-coordinating iodide anions compensate the charge of the complex cation. The remaining solvent mol-ecules and the iodide counter-anions inter-act with the complex cation by weak non-classical C-H⋯I and C-H⋯O hydrogen bonds.

18.
J Phys Chem B ; 119(22): 6852-72, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25961154

ABSTRACT

A combined structural, vibrational spectroscopy, and solid-state DFT study of the hydrogen-bonded complex of bromanilic acid with 2,6-dimethylpyrazine is reported. The crystallographic structure was determined by means of low-temperature single-crystal X-ray diffraction, which reveals the molecular units in their native protonation states, forming one-dimensional infinite nets of moderate-strength O···H-N hydrogen bonds. The nature of the crystallographic forces, stabilizing the studied structure, has been drawn by employing the noncovalent interactions analysis. It was found that, in addition to the hydrogen bonding, the intermolecular forces are dominated by stacking interactions and C-H···O contacts. The thermal and calorimetric analysis was employed to probe stability of the crystal phase. The structural analysis was further supported by a computationally assisted (13)C CP/MAS NMR study, providing a complete assignment of the recorded resonances. The vibrational dynamics was explored by combining the optical (IR, Raman, TDs-THz) and inelastic neutron scattering (INS) spectroscopy techniques with the state-of-the-art solid-state density functional theory (DFT) computations. Despite the quasi-harmonic approximation assumed throughout the study, an excellent agreement between the theoretical and experimental data was achieved over the entire spectral range, allowing for a deep and possibly thorough understanding of the vibrational characteristics of the system. Particularly, the significant influence of the long-range dipole coupling on the IR spectrum has been revealed. On the basis of a wealth of information gathered, the recent implementation of a dispersion-corrected linear-response scheme has been extensively examined.


Subject(s)
Benzoquinones/chemistry , Pyrazines/chemistry , Quantum Theory , Crystallography, X-Ray , Drug Stability , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Neutron Diffraction , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Temperature , Terahertz Spectroscopy
19.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 4): o536, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23634077

ABSTRACT

The title compound, also known as 7-nitro-tropolone, C7H5NO4, exists in the crystalline state as the 2-hy-droxy-7-nitro-cyclo-hepta-2,4,6-trien-1-one tautomer and not as 2-hy-droxy-3-nitro-cyclo-hepta-2,4,6-trien-1-one. The dihedral angle between the ring and the nitro group is 70.3 (2)°. In the crystal, neighbouring mol-ecules are linked into dimers by a pair of O-H⋯O hydrogen bonds. In addition, the crystal is stabilized by O⋯π [3.4039 (14) Å] and O⋯O [3.073 (2) Å] inter-actions.

20.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 1): o127-8, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23476388

ABSTRACT

The asymmetric unit of the title compound, C11H12N2O·C25H28N4O2, contains two different mol-ecules. The smaller is known as anti-pyrine [systematic name: 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one] and the larger is built up from two antypirine mol-ecules which are connected through a C atom of the pyrazolone ring to a central propanyl part [systematic name: 4,4'-(propane-2,2-di-yl)bis-[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one]. Intra-molecular C-H⋯O hydrogen bonds occur in the latter mol-ecule. In the crystal, C-H⋯O hydrogen bonds link the mol-ecules into a two-dimensional network parallel to (001).

SELECTION OF CITATIONS
SEARCH DETAIL
...