Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 166(1): 197-206, 2001 Jan 01.
Article in English | MEDLINE | ID: mdl-11123293

ABSTRACT

TCR and CD28 costimulatory receptor-cooperative induction of T cell IL-2 secretion is dependent upon activation of mitogen-activated protein (MAP) kinases. Using yeast-hybrid technology, we cloned a novel CD28 cytoplasmic tail (CD28 CYT) interacting protein, MAP kinase phosphatase-6 (MKP6), which we demonstrate inactivates MAP kinases. Several lines of evidence indicate that MKP6 plays an important functional role in CD28 costimulatory signaling. First, in human peripheral blood T cells (PBT), expression of MKP6 is strongly up-regulated by CD28 costimulation. Second, transfer of dominant-negative MKP6 to PBT with the use of retroviruses primes PBT for the secretion of substantially larger quantities of IL-2, specifically in response to CD28 costimulation. A similar enhancement of IL-2 secretion is observed neither in response to TCR plus CD2 costimulatory receptor engagement nor in response to other mitogenic stimuli such as phorbol ester and ionomycin. Furthermore, this hypersensitivity to CD28 costimulation is associated with CD28-mediated hyperactivation of MAP kinases. Third, a retroviral transduced chimeric receptor with a CD28 CYT that is specifically unable to bind MKP6 costimulates considerably larger quantities of IL-2 from PBT than a similar transduced chimeric receptor that contains a wild-type CD28 CYT. Taken together, these results suggest that MKP6 functions as a novel negative-feedback regulator of CD28 costimulatory signaling that controls the activation of MAP kinases.


Subject(s)
CD28 Antigens/physiology , Down-Regulation/immunology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Phosphoprotein Phosphatases , Protein Tyrosine Phosphatases/physiology , T-Lymphocytes/enzymology , Adult , Amino Acid Sequence , Base Sequence , CD28 Antigens/genetics , CD28 Antigens/metabolism , Cytoplasm/enzymology , Cytoplasm/genetics , Cytoplasm/immunology , Cytoplasm/metabolism , Down-Regulation/genetics , Dual-Specificity Phosphatases , Enzyme Activation/genetics , Enzyme Inhibitors/pharmacology , Fetus , Humans , Interleukin-2/biosynthesis , JNK Mitogen-Activated Protein Kinases , Jurkat Cells , Mitogen-Activated Protein Kinase Phosphatases , Mitogen-Activated Protein Kinases/metabolism , Molecular Sequence Data , Organ Specificity/genetics , Organ Specificity/immunology , Peptide Fragments/genetics , Peptide Fragments/immunology , Peptide Fragments/metabolism , Phosphorylation , Protein Tyrosine Phosphatases/biosynthesis , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Retroviridae/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/immunology , Saccharomyces cerevisiae/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transduction, Genetic , Two-Hybrid System Techniques , Tyrosine/genetics , Tyrosine/metabolism , p38 Mitogen-Activated Protein Kinases
2.
Neoplasia ; 3(6): 480-8, 2001.
Article in English | MEDLINE | ID: mdl-11774030

ABSTRACT

A noninvasive method for molecular imaging of T-cell activity in vivo would be of considerable value. It would aid in understanding the role of specific genes and signal transduction pathways in the course of normal and pathologic immune responses, and could elucidate temporal dynamics and immune regulation at different stages of disease and following therapy. We developed and assessed a novel method for monitoring the T-cell receptor (TCR)-dependent nuclear factor of activated T cells (NFAT)-mediated activation of T cells by optical fluorescence imaging (OFI) and positron emission tomography (PET). The herpes simplex virus type 1 thymidine kinase/green fluorescent protein [HSV1-tk/GFP (TKGFP)] dual reporter gene was used to monitor NFAT-mediated transcriptional activation in human Jurkat cells. A recombinant retrovirus bearing the NFAT-TKGFP reporter system was constructed in which the TKGFP reporter gene was placed under control of an artificial cis-acting NFAT-specific enhancer. Transduced Jurkat cells were used to establish subcutaneous infiltrates in nude rats. We demonstrated that noninvasive OFI and nuclear imaging of T-cell activation is feasible using the NFAT-TKGFP reporter system. PET imaging with [(124)I]FIAU using the NFAT-TKGFP reporter system is sufficiently sensitive to detect T-cell activation in vivo. PET images were confirmed by independent measurements of T-cell activation (e.g., CD69) and induction of GFP fluorescence. PET imaging of TCR-induced NFAT-dependent transcriptional activity may be useful in the assessment of T cell responses, T-cell-based adoptive therapies, vaccination strategies and immunosuppressive drugs.


Subject(s)
DNA-Binding Proteins/physiology , Genes, Reporter , Jurkat Cells/immunology , Luminescent Proteins/analysis , Lymphocyte Activation/physiology , Nuclear Proteins , Receptors, Antigen, T-Cell/immunology , Thymidine Kinase/analysis , Tomography, Emission-Computed , Transcription Factors/physiology , Transcription, Genetic , Animals , Enhancer Elements, Genetic , Feasibility Studies , Flow Cytometry , Fluorometry , Green Fluorescent Proteins , Humans , Injections, Subcutaneous , Interleukin-2/biosynthesis , Interleukin-2/genetics , Jurkat Cells/metabolism , Jurkat Cells/transplantation , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Lymphocyte Activation/genetics , Mice , NFATC Transcription Factors , Neoplasm Proteins/immunology , Promoter Regions, Genetic/genetics , Rats , Rats, Nude , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Sensitivity and Specificity , Signal Transduction , Thymidine Kinase/biosynthesis , Thymidine Kinase/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...