Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Mol Ther Methods Clin Dev ; 31: 101135, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38027064

ABSTRACT

Immunotherapy of acute myeloid leukemia (AML) has been challenging because the lack of tumor-specific antigens results in "on-target, off-tumor" toxicity. To unlock the full potential of AML therapies, we used CRISPR-Cas9 to genetically ablate the myeloid protein CD33 from healthy donor hematopoietic stem and progenitor cells (HSPCs), creating tremtelectogene empogeditemcel (trem-cel). Trem-cel is a HSPC transplant product designed to provide a reconstituted hematopoietic compartment that is resistant to anti-CD33 drug cytotoxicity. Here, we describe preclinical studies and process development of clinical-scale manufacturing of trem-cel. Preclinical data showed proof-of-concept with loss of CD33 surface protein and no impact on myeloid cell differentiation or function. At clinical scale, trem-cel could be manufactured reproducibly, routinely achieving >70% CD33 editing with no effect on cell viability, differentiation, and function. Trem-cel pharmacology studies using mouse xenograft models showed long-term engraftment, multilineage differentiation, and persistence of gene editing. Toxicology assessment revealed no adverse findings, and no significant or reproducible off-target editing events. Importantly, CD33-knockout myeloid cells were resistant to the CD33-targeted agent gemtuzumab ozogamicin in vitro and in vivo. These studies supported the initiation of the first-in-human, multicenter clinical trial evaluating the safety and efficacy of trem-cel in patients with AML (NCT04849910).

3.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: mdl-37092553

ABSTRACT

Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.


Subject(s)
Induced Pluripotent Stem Cells , Puberty, Precocious , Humans , Female , Mice , Animals , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Hypothalamus/metabolism , Puberty , Gonadotropin-Releasing Hormone/metabolism , Puberty, Precocious/genetics , Puberty, Precocious/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Nat Cell Biol ; 17(10): 1356-69, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26389662

ABSTRACT

The AAA-ATPase VCP (also known as p97 or CDC48) uses ATP hydrolysis to 'segregate' ubiquitylated proteins from their binding partners. VCP acts through UBX-domain-containing adaptors that provide target specificity, but the targets and functions of UBXD proteins remain poorly understood. Through systematic proteomic analysis of UBXD proteins in human cells, we reveal a network of over 195 interacting proteins, implicating VCP in diverse cellular pathways. We have explored one such complex between an unstudied adaptor UBXN10 and the intraflagellar transport B (IFT-B) complex, which regulates anterograde transport into cilia. UBXN10 localizes to cilia in a VCP-dependent manner and both VCP and UBXN10 are required for ciliogenesis. Pharmacological inhibition of VCP destabilized the IFT-B complex and increased trafficking rates. Depletion of UBXN10 in zebrafish embryos causes defects in left-right asymmetry, which depends on functional cilia. This study provides a resource for exploring the landscape of UBXD proteins in biology and identifies an unexpected requirement for VCP-UBXN10 in ciliogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Cilia/metabolism , Protein Interaction Maps , Proteomics/methods , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Animals , Cell Cycle Proteins/genetics , Cilia/physiology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Immunoblotting , LLC-PK1 Cells , Microscopy, Confocal , Microscopy, Fluorescence , Morphogenesis/physiology , Protein Binding , Protein Interaction Mapping/methods , RNA Interference , Swine , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Valosin Containing Protein
6.
Nature ; 512(7512): 49-53, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25043012

ABSTRACT

In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4(CRBN). Here we present crystal structures of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4(CRBN) and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4(CRBN). Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4(CRBN) while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.


Subject(s)
Peptide Hydrolases/chemistry , Thalidomide/chemistry , Ubiquitin-Protein Ligases/chemistry , Adaptor Proteins, Signal Transducing , Crystallography, X-Ray , DNA-Binding Proteins/agonists , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Lenalidomide , Models, Molecular , Multiprotein Complexes/agonists , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Peptide Hydrolases/metabolism , Protein Binding , Structure-Activity Relationship , Substrate Specificity , Thalidomide/analogs & derivatives , Thalidomide/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism
7.
Cell ; 157(7): 1671-84, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24949976

ABSTRACT

Most E3 ligases use a RING domain to activate a thioester-linked E2∼ubiquitin-like protein (UBL) intermediate and promote UBL transfer to a remotely bound target protein. Nonetheless, RING E3 mechanisms matching a specific UBL and acceptor lysine remain elusive, including for RBX1, which mediates NEDD8 ligation to cullins and >10% of all ubiquitination. We report the structure of a trapped RING E3-E2∼UBL-target intermediate representing RBX1-UBC12∼NEDD8-CUL1-DCN1, which reveals the mechanism of NEDD8 ligation and how a particular UBL and acceptor lysine are matched by a multifunctional RING E3. Numerous mechanisms specify cullin neddylation while preventing noncognate ubiquitin ligation. Notably, E2-E3-target and RING-E2∼UBL modules are not optimized to function independently, but instead require integration by the UBL and target for maximal reactivity. The UBL and target regulate the catalytic machinery by positioning the RING-E2∼UBL catalytic center, licensing the acceptor lysine, and influencing E2 reactivity, thereby driving their specific coupling by a multifunctional RING E3.


Subject(s)
Ubiquitins/chemistry , Ubiquitins/metabolism , Amino Acid Sequence , Carrier Proteins/metabolism , Catalytic Domain , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Crystallography, X-Ray , Cullin Proteins/chemistry , Cullin Proteins/metabolism , Humans , Models, Molecular , Molecular Sequence Data , NEDD8 Protein , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism
8.
EMBO Rep ; 14(12): 1050-61, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24232186

ABSTRACT

Cullin-RING E3 ubiquitin ligases (CRLs) control a plethora of biological pathways through targeted ubiquitylation of signalling proteins. These modular assemblies use substrate receptor modules to recruit specific targets. Recent efforts have focused on understanding the mechanisms that control the activity state of CRLs through dynamic alterations in CRL architecture. Central to these processes are cycles of cullin neddylation and deneddylation, as well as exchange of substrate receptor modules to re-sculpt the CRL landscape, thereby responding to the cellular requirements to turn over distinct proteins in different contexts. This review is focused on how CRLs are dynamically controlled with an emphasis on how cullin neddylation cycles are integrated with receptor exchange.


Subject(s)
Cullin Proteins/metabolism , Ubiquitins/metabolism , Amino Acid Sequence , Animals , COP9 Signalosome Complex , Cullin Proteins/chemistry , Humans , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Protein Binding , Transcription Factors/metabolism , Ubiquitins/chemistry
9.
Mol Cell ; 40(4): 645-57, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21055985

ABSTRACT

Replication stress involving collision of replisomes with camptothecin (CPT)-stabilized DNA-Topoisomerase I adducts activates an ATR-dependent pathway to promote repair by homologous recombination. To identify human genes that protect cells from such replication stress, we performed a genome-wide CPT sensitivity screen. Among numerous candidate genes are two previously unstudied proteins: the ankyrin repeat protein NFKBIL2 and C6ORF167 (MMS22L), distantly related to yeast replication stress regulator Mms22p. MMS22L and NFKBIL2 interact with each other and with FACT (facilitator of chromatin transcription) and MCM (minichromosome maintenance) complexes. Cells depleted of NFKBIL2 or MMS22L are sensitive to DNA-damaging agents, load phosphorylated RPA onto chromatin in a CTIP-dependent manner, activate the ATR/ATRIP-CHK1 and double-strand break repair signaling pathways, and are defective in HR. This study identifies MMS22L-NFKBIL2 as components of the replication stress control pathway and provides a resource for discovery of additional components of this pathway.


Subject(s)
Camptothecin/pharmacology , DNA-Binding Proteins/metabolism , Genetic Testing , Genome, Human/genetics , Genomic Instability/drug effects , NF-kappa B/metabolism , Nuclear Proteins/metabolism , DNA Damage , DNA Repair/drug effects , DNA Replication/drug effects , DNA-Directed DNA Polymerase/metabolism , Drug Resistance, Neoplasm/drug effects , HeLa Cells , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Multienzyme Complexes/metabolism , NF-kappa B/deficiency , Phosphorylation/drug effects , Protein Binding/drug effects , RNA, Small Interfering/metabolism , Recombination, Genetic/drug effects , Recombination, Genetic/genetics , Replication Protein A/metabolism , Reproducibility of Results , Stress, Physiological/drug effects , Tumor Suppressor p53-Binding Protein 1
11.
PLoS Genet ; 6(5): e1000973, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20523895

ABSTRACT

In budding yeast, an HO endonuclease-inducible double-strand break (DSB) is efficiently repaired by several homologous recombination (HR) pathways. In contrast to gene conversion (GC), where both ends of the DSB can recombine with the same template, break-induced replication (BIR) occurs when only the centromere-proximal end of the DSB can locate homologous sequences. Whereas GC results in a small patch of new DNA synthesis, BIR leads to a nonreciprocal translocation. The requirements for completing BIR are significantly different from those of GC, but both processes require 5' to 3' resection of DSB ends to create single-stranded DNA that leads to formation of a Rad51 filament required to initiate HR. Resection proceeds by two pathways dependent on Exo1 or the BLM homolog, Sgs1. We report that Exo1 and Sgs1 each inhibit BIR but have little effect on GC, while overexpression of either protein severely inhibits BIR. In contrast, overexpression of Rad51 markedly increases the efficiency of BIR, again with little effect on GC. In sgs1Delta exo1Delta strains, where there is little 5' to 3' resection, the level of BIR is not different from either single mutant; surprisingly, there is a two-fold increase in cell viability after HO induction whereby 40% of all cells survive by formation of a new telomere within a few kb of the site of DNA cleavage. De novo telomere addition is rare in wild-type, sgs1Delta, or exo1Delta cells. In sgs1Delta exo1Delta, repair by GC is severely inhibited, but cell viability remains high because of new telomere formation. These data suggest that the extensive 5' to 3' resection that occurs before the initiation of new DNA synthesis in BIR may prevent efficient maintenance of a Rad51 filament near the DSB end. The severe constraint on 5' to 3' resection, which also abrogates activation of the Mec1-dependent DNA damage checkpoint, permits an unprecedented level of new telomere addition.


Subject(s)
Chromosomes, Fungal , Exodeoxyribonucleases/physiology , RecQ Helicases/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/genetics , Telomere , Base Sequence , DNA Primers , DNA Replication , Gene Conversion , Genes, Fungal , Polymerase Chain Reaction , Translocation, Genetic
12.
Genes Dev ; 24(11): 1133-44, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20516198

ABSTRACT

Break-induced replication (BIR) is an efficient homologous recombination (HR) pathway employed to repair a DNA double-strand break (DSB) when homology is restricted to one end. All three major replicative DNA polymerases are required for BIR, including the otherwise nonessential Pol32 subunit. Here we show that BIR requires the replicative DNA helicase (Cdc45, the GINS, and Mcm2-7 proteins) as well as Cdt1. In contrast, both subunits of origin recognition complex (ORC) and Cdc6, which are required to create a prereplication complex (pre-RC), are dispensable. The Cdc7 kinase, required for both initiation of DNA replication and post-replication repair (PRR), is also required for BIR. Ubiquitination and sumoylation of the DNA processivity clamp PCNA play modest roles; in contrast, PCNA alleles that suppress pol32Delta's cold sensitivity fail to suppress its role in BIR, and are by themselves dominant inhibitors of BIR. These results suggest that origin-independent BIR involves cross-talk between normal DNA replication factors and PRR.


Subject(s)
DNA Breaks, Double-Stranded , DNA Replication/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Origin Recognition Complex , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Alleles , Cell Cycle Proteins/metabolism , Cold Temperature , DNA Helicases/metabolism , DNA Repair/genetics , DNA Repair/physiology , DNA Replication/genetics , Mutation , Origin Recognition Complex/genetics , Protein Serine-Threonine Kinases/metabolism , SUMO-1 Protein/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination
13.
Nature ; 448(7155): 820-3, 2007 Aug 16.
Article in English | MEDLINE | ID: mdl-17671506

ABSTRACT

Break-induced replication (BIR) is an efficient homologous recombination process to initiate DNA replication when only one end of a chromosome double-strand break shares homology with a template. BIR is thought to re-establish replication at stalled and broken replication forks and to act at eroding telomeres in cells that lack telomerase in pathways known as 'alternative lengthening of telomeres' (reviewed in refs 2, 6). Here we show that, in haploid budding yeast, Rad51-dependent BIR induced by HO endonuclease requires the lagging strand DNA Polalpha-primase complex as well as Poldelta to initiate new DNA synthesis. Polepsilon is not required for the initial primer extension step of BIR but is required to complete 30 kb of new DNA synthesis. Initiation of BIR also requires the nonessential DNA Poldelta subunit Pol32 primarily through its interaction with another Poldelta subunit, Pol31. HO-induced gene conversion, in which both ends of a double-strand break engage in homologous recombination, does not require Pol32. Pol32 is also required for the recovery of both Rad51-dependent and Rad51-independent survivors in yeast strains lacking telomerase. These results strongly suggest that both types of telomere maintenance pathways occur by recombination-dependent DNA replication. Thus Pol32, dispensable for replication and for gene conversion, is uniquely required for BIR; this finding provides an opening into understanding how DNA replication re-start mechanisms operate in eukaryotes. We also note that Pol32 homologues have been identified both in fission yeast and in metazoans where telomerase-independent survivors with alternative telomere maintenance have also been identified.


Subject(s)
DNA Breaks, Double-Stranded , DNA Replication , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Telomere/genetics , Telomere/metabolism , DNA Polymerase I/metabolism , DNA Polymerase II/metabolism , DNA Polymerase III/metabolism , DNA Primase/metabolism , DNA Repair , Deoxyribonucleases, Type II Site-Specific/metabolism , Gene Conversion , Kinetics , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Saccharomyces cerevisiae/cytology , Telomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...