Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Phys Eng Express ; 7(4)2021 05 11.
Article in English | MEDLINE | ID: mdl-33930887

ABSTRACT

The potential of naturally occurring substances as a source of biomedical materials is well-recognised and is being increasingly exploited. Silk fibroin membranes derived fromBombyx morisilk cocoons exemplify this, for example as substrata for the growth of ocular cells with the aim of generating biomaterial-cell constructs for tissue engineering. This study investigated the transport properties of selected silk fibroin membranes under conditions that allowed equilibrium hydration of the membranes to be maintained. The behaviour of natural fibroin membranes was compared with fibroin membranes that have been chemically modified with poly(ethylene glycol). The permeation of the smaller hydrated sodium ion was higher than that of the hydrated calcium ion for all three ethanol treated membranes investigated. The PEG and HRP-modified C membrane, which had the highest water content at 59.6 ± 1.5% exhibited the highest permeation of the three membranes at 95.7 ± 2.8 × 10-8cm2s-1compared with 17.9 ± 0.9 × 10-8cm2s-1and 8.7 ± 1.7 × 10-8cm2s-1for membranes A and B respectively for the NaCl permeant. Poly(ethylene glycol) was used to increase permeability while exploiting the crosslinking capabilities of horseradish peroxidase to increase the compressive strength of the membrane. Importantly, we have established that the permeation behaviour of water-soluble permeants with hydrated radii in the sub-nanometer range is analogous to that of conventional hydrogel polymers.


Subject(s)
Fibroins/chemistry , Biocompatible Materials , Horseradish Peroxidase , Membranes , Polyethylene Glycols , Water
2.
J Biomed Mater Res B Appl Biomater ; 109(1): 137-148, 2021 01.
Article in English | MEDLINE | ID: mdl-32710466

ABSTRACT

The importance of the microstzructure of silicone hydrogels is widely appreciated but is poorly understood and minimally investigated. To ensure comfort and eye health, these materials must simultaneously exhibit both high oxygen and high water permeability. In contrast with most conventional hydrogels, the water content and water structuring within silicone hydrogels cannot be solely used to predict permeability. The materials achieve these opposing requirements based on a composite of nanoscale domains of oxygen-permeable (silicone) and water-permeable hydrophilic components. This study correlated characteristic ion permeation coefficients of a selection of commercially available silicone hydrogel contact lenses with their morphological structure and chemical composition. Differential scanning calorimetry measured the water structuring properties through subdivision of the freezing water component into polymer-associated water (loosely bound to the polymer matrix) and ice-like water (unimpeded with a melting point close to that of pure water). Small-angle x-ray scattering, and environmental scanning electron microscopy techniques were used to investigate the structural morphology of the materials over a range of length scales. Significant, and previously unrecognized, differences in morphology between individual materials at nanometer length scales were determined; this will aid the design and performance of the next generation of ocular biomaterials, capable of maintaining ocular homeostasis.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Silicones/chemistry , Contact Lenses, Hydrophilic , Equipment Design , Humans , Hydrophobic and Hydrophilic Interactions , Materials Testing , Oxygen , Permeability , Water
3.
J Biomed Mater Res B Appl Biomater ; 107(6): 1997-2005, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30566286

ABSTRACT

The health of the cornea is paramount; the aim of this study was to assess the permeation of essential tear electrolytes through a range of commercial contact lenses. Donor/receiver conductivity measurements were recorded using a dual-chamber diffusion system which allowed material permeability profiles and coefficients to be calculated. Water structuring properties of the contact lenses were measured by differential scanning calorimetry. Freezing water was subdivided into "ice-like" water (free, non-bound and has a melting point close to that of pure water) and polymer-associated water (free but loosely bound to the polymer matrix). Each material interacts differently with each of the three salts, for example; lotrafilcon B (34% equilibrium water content [EWC]) shows a higher and larger range of receiver concentrations post KCl, NaCl, CaCl2 permeation (76, 59 and 42 mM, respectively) compared with the lower and tighter range exhibited by lotrafilcon A (22% EWC) (36, 22, and 18 mM, respectively). Additionally, in terms of the relationship between permeation and water structure, balafilcon A (34% EWC) has a high KCl permeation (P60 258 × 10-8 cm2 /s) and ice-like water (14%), but narafilcon A (44% EWC) has a low ion permeation (P60 3.9 × 10-8 cm2 /s) and significantly less ice-like water (4%). The permeation trends for the silicone hydrogel materials could not be fully explained by water content and structuring. Composition and, in particular, the microstructure and morphology of these materials must impart a greater influence on permeation capability. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1997-2005, 2019.


Subject(s)
Contact Lenses, Hydrophilic , Electrolytes/chemistry , Humans , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...