Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 14876, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290271

ABSTRACT

Meat from wildlife species (bushmeat) represents a major source of dietary protein in low- and middle-income countries where humans and wildlife live in close proximity. Despite the occurrence of zoonotic pathogens in wildlife, their prevalence in bushmeat remains unknown. To assess the risk of exposure to major pathogens in bushmeat, a total of 3784 samples, both fresh and processed, were collected from three major regions in Tanzania during both rainy and dry seasons, and were screened by real-time PCR for the presence of DNA signatures of Bacillus anthracis (B. anthracis), Brucella spp. (Brucella) and Coxiella burnetii (Coxiella). The analysis identified DNA signatures of B. anthracis (0.48%), Brucella (0.9%), and Coxiella (0.66%) in a total of 77 samples. Highest prevalence rates of B. anthracis, Brucella, and Coxiella were observed in wildebeest (56%), dik-dik (50%), and impala (24%), respectively. Fresh samples, those collected during the rainy season, and samples from Selous or Serengeti had a greater relative risk of being positive. Microbiome characterization identified Firmicutes and Proteobacteria as the most abundant phyla. The results highlight and define potential risks of exposure to endemic wildlife diseases from bushmeat and the need for future investigations to address the public health and emerging infectious disease risks associated with bushmeat harvesting, trade, and consumption.


Subject(s)
Bacillus anthracis/genetics , Bacterial Zoonoses/microbiology , Bacterial Zoonoses/transmission , Brucella/genetics , Coxiella burnetii/genetics , DNA, Bacterial/analysis , Food Microbiology , Meat/microbiology , Animals , Animals, Wild , Bacillus anthracis/isolation & purification , Bacterial Zoonoses/prevention & control , Brucella/isolation & purification , Coxiella burnetii/isolation & purification , Proteobacteria/genetics , Proteobacteria/isolation & purification , Real-Time Polymerase Chain Reaction , Risk , Seasons , Tanzania
2.
Sci Rep ; 9(1): 18086, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792246

ABSTRACT

Bushmeat, the meat and organs derived from wildlife species, is a common source of animal protein in the diets of those living in sub-Saharan Africa and is frequently associated with zoonotic spillover of dangerous pathogens. Given the frequent consumption of bushmeat in this region and the lack of knowledge about the microbial communities associated with this meat, the microbiome of 56 fresh and processed bushmeat samples ascertained from three districts in the Western Serengeti ecosystem in Tanzania was characterized using 16S rRNA metagenomic sequencing. The results show that the most abundant phyla present in bushmeat samples include Firmicutes (67.8%), Proteobacteria (18.4%), Cyanobacteria (8.9%), and Bacteroidetes (3.1%). Regardless of wildlife species, sample condition, season, or region, the microbiome is diverse across all samples, with no significant difference in alpha or beta diversity. The findings also suggest the presence of DNA signatures of potentially dangerous zoonotic pathogens, including those from the genus Bacillus, Brucella, Coxiella, and others, in bushmeat. Together, this investigation provides a better understanding of the microbiome associated with this major food source in samples collected from the Western Serengeti in Tanzania and highlights a need for future investigations on the potential health risks associated with the harvesting, trade, and consumption of bushmeat in Sub-Saharan Africa.


Subject(s)
Animals, Wild/microbiology , Meat/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Ecosystem , Humans , Meat/supply & distribution , Microbiota , RNA, Ribosomal, 16S/genetics , Tanzania , Zoonoses/etiology , Zoonoses/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...