Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
PLoS Genet ; 19(12): e1011085, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38096267

ABSTRACT

Clonal genome evolution is a key feature of asexually reproducing species and human cancer development. While many studies have described the landscapes of clonal genome evolution in cancer, few determine the underlying evolutionary parameters from molecular data, and even fewer integrate theory with data. We derived theoretical results linking mutation rate, time, expansion dynamics, and biological/clinical parameters. Subsequently, we inferred time-resolved estimates of evolutionary parameters from mutation accumulation, mutational signatures and selection. We then applied this framework to predict the time of speciation of the marbled crayfish, an enigmatic, globally invasive parthenogenetic freshwater crayfish. The results predict that speciation occurred between 1986 and 1990, which is consistent with biological records. We also used our framework to analyze whole-genome sequencing datasets from primary and relapsed glioblastoma, an aggressive brain tumor. The results identified evolutionary subgroups and showed that tumor cell survival could be inferred from genomic data that was generated during the resection of the primary tumor. In conclusion, our framework allowed a time-resolved, integrated analysis of key parameters in clonally evolving genomes, and provided novel insights into the evolutionary age of marbled crayfish and the progression of glioblastoma.


Subject(s)
Glioblastoma , Animals , Humans , Glioblastoma/genetics , Genome/genetics , Astacoidea/genetics , Genomics , Biological Evolution , Mutation
2.
Nat Commun ; 14(1): 5413, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669956

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is a serious public health problem due to its high incidence and metastatic potential. It may progress from actinic keratosis (AK), a precancerous lesion, or the in situ carcinoma, Bowen's disease (BD). During this progression, malignant keratinocytes activate dermal fibroblasts into tumor promoting cancer-associated fibroblasts (CAFs), whose origin and emergence remain largely unknown. Here, we generate and analyze >115,000 single-cell transcriptomes from healthy skin, BD and cSCC of male donors. Our results reveal immunoregulatory and matrix-remodeling CAF subtypes that may derive from pro-inflammatory and mesenchymal fibroblasts, respectively. These CAF subtypes are largely absent in AK and interact with different cell types to establish a pro-tumorigenic microenvironment. These findings are cSCC-specific and could not be recapitulated in basal cell carcinomas. Our study provides important insights into the potential origin and functionalities of dermal CAFs that will be highly beneficial for the specific targeting of the cSCC microenvironment.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma in Situ , Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Keratosis, Actinic , Skin Neoplasms , Male , Humans , Tumor Microenvironment
3.
EMBO J ; 42(19): e112507, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37609797

ABSTRACT

Queuosine (Q) is a modified nucleoside at the wobble position of specific tRNAs. In mammals, queuosinylation is facilitated by queuine uptake from the gut microbiota and is introduced into tRNA by the QTRT1-QTRT2 enzyme complex. By establishing a Qtrt1 knockout mouse model, we discovered that the loss of Q-tRNA leads to learning and memory deficits. Ribo-Seq analysis in the hippocampus of Qtrt1-deficient mice revealed not only stalling of ribosomes on Q-decoded codons, but also a global imbalance in translation elongation speed between codons that engage in weak and strong interactions with their cognate anticodons. While Q-dependent molecular and behavioral phenotypes were identified in both sexes, female mice were affected more severely than males. Proteomics analysis confirmed deregulation of synaptogenesis and neuronal morphology. Together, our findings provide a link between tRNA modification and brain functions and reveal an unexpected role of protein synthesis in sex-dependent cognitive performance.


Subject(s)
Nucleoside Q , RNA, Transfer , Female , Mice , Animals , Nucleoside Q/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Anticodon , Protein Biosynthesis , Codon , Mammals/genetics
4.
iScience ; 26(8): 107300, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37554463

ABSTRACT

METTL3 is the major writer of N6-Methyladenosine (m6A) and has been associated with controversial roles in cancer. This is best illustrated in urothelial carcinoma of the bladder (UCB), where METTL3 was described to have both oncogenic and tumor-suppressive functions. Here, we reinvestigated the role of METTL3 in UCB. METTL3 knockout reduced the oncogenic phenotype and m6A levels of UCB cell lines. However, complete depletion of METTL3/m6A was not achieved due to selection of cells expressing alternative METTL3 isoforms. Systematic vulnerability and inhibitor response analyses suggested that uroepithelial cells depend on METTL3 for viability. Furthermore, expression and survival analyses of clinical data revealed a complex role for METTL3 in UCB, with decreased m6A mRNA levels in UCB tumors. Our results suggest that METTL3 expression may be a suitable diagnostic UCB biomarker, as the enzyme promotes UCB formation. However, the suitability of the enzyme as a therapeutic target should be evaluated carefully.

5.
Nat Commun ; 14(1): 4005, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414790

ABSTRACT

TET2/3 play a well-known role in epigenetic regulation and mouse development. However, their function in cellular differentiation and tissue homeostasis remains poorly understood. Here we show that ablation of TET2/3 in intestinal epithelial cells results in a murine phenotype characterized by a severe homeostasis imbalance in the small intestine. Tet2/3-deleted mice show a pronounced loss of mature Paneth cells as well as fewer Tuft and more Enteroendocrine cells. Further results show major changes in DNA methylation at putative enhancers, which are associated with cell fate-determining transcription factors and functional effector genes. Notably, pharmacological inhibition of DNA methylation partially rescues the methylation and cellular defects. TET2/3 loss also alters the microbiome, predisposing the intestine to inflammation under homeostatic conditions and acute inflammation-induced death. Together, our results uncover previously unrecognized critical roles for DNA demethylation, possibly occurring subsequently to chromatin opening during intestinal development, culminating in the establishment of normal intestinal crypts.


Subject(s)
Dioxygenases , Epigenesis, Genetic , Animals , Mice , Cell Differentiation/genetics , Dioxygenases/metabolism , DNA Methylation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Homeostasis , Inflammation/metabolism , Intestine, Small/metabolism
6.
Nat Cell Biol ; 25(5): 631-632, 2023 05.
Article in English | MEDLINE | ID: mdl-37081166

Subject(s)
Neoplasms , Wound Healing , Humans
7.
Environ Epigenet ; 9(1): dvad001, 2023.
Article in English | MEDLINE | ID: mdl-36936885

ABSTRACT

DNA methylation is an important epigenetic modification that is widely conserved across animal genomes. It is widely accepted that DNA methylation patterns can change in a context-dependent manner, including in response to changing environmental parameters. However, this phenomenon has not been analyzed in animal livestock yet, where it holds major potential for biomarker development. Building on the previous identification of population-specific DNA methylation in clonal marbled crayfish, we have now generated numerous base-resolution methylomes to analyze location-specific DNA methylation patterns. We also describe the time-dependent conversion of epigenetic signatures upon transfer from one environment to another. We further demonstrate production system-specific methylation signatures in shrimp, river-specific signatures in salmon and farm-specific signatures in chicken. Together, our findings provide a detailed resource for epigenetic variation in animal livestock and suggest the possibility for origin tracing of animal products by epigenetic fingerprinting.

8.
Front Aging ; 4: 1258183, 2023.
Article in English | MEDLINE | ID: mdl-38274286

ABSTRACT

Aging is a complex process characterized by the gradual decline of physiological functions, leading to increased vulnerability to age-related diseases and reduced quality of life. Alterations in DNA methylation (DNAm) patterns have emerged as a fundamental characteristic of aged human skin, closely linked to the development of the well-known skin aging phenotype. These changes have been correlated with dysregulated gene expression and impaired tissue functionality. In particular, the skin, with its visible manifestations of aging, provides a unique model to study the aging process. Despite the importance of epigenetic age clocks in estimating biological age based on the correlation between methylation patterns and chronological age, a second-generation epigenetic age clock, which correlates DNAm patterns with a particular phenotype, specifically tailored to skin tissue is still lacking. In light of this gap, we aimed to develop a novel second-generation epigenetic age clock explicitly designed for skin tissue to facilitate a deeper understanding of the factors contributing to individual variations in age progression. To achieve this, we used methylation patterns from more than 370 female volunteers and developed the first skin-specific second-generation epigenetic age clock that accurately predicts the skin aging phenotype represented by wrinkle grade, visual facial age, and visual age progression, respectively. We then validated the performance of our clocks on independent datasets and demonstrated their broad applicability. In addition, we integrated gene expression and methylation data from independent studies to identify potential pathways contributing to skin age progression. Our results demonstrate that our epigenetic age clock, VisAgeX, specifically predicting visual age progression, not only captures known biological pathways associated with skin aging, but also adds novel pathways associated with skin aging.

9.
Front Aging ; 4: 1258184, 2023.
Article in English | MEDLINE | ID: mdl-38500495

ABSTRACT

Changes in DNA methylation patterning have been reported to be a key hallmark of aged human skin. The altered DNA methylation patterns are correlated with deregulated gene expression and impaired tissue functionality, leading to the well-known skin aging phenotype. Searching for small molecules, which correct the aged methylation pattern therefore represents a novel and attractive strategy for the identification of anti-aging compounds. DNMT1 maintains epigenetic information by copying methylation patterns from the parental (methylated) strand to the newly synthesized strand after DNA replication. We hypothesized that a modest inhibition of this process promotes the restoration of the ground-state epigenetic pattern, thereby inducing rejuvenating effects. In this study, we screened a library of 1800 natural substances and 640 FDA-approved drugs and identified the well-known antioxidant and anti-inflammatory molecule dihydromyricetin (DHM) as an inhibitor of the DNA methyltransferase DNMT1. DHM is the active ingredient of several plants with medicinal use and showed robust inhibition of DNMT1 in biochemical assays. We also analyzed the effect of DHM in cultivated keratinocytes by array-based methylation profiling and observed a moderate, but significant global hypomethylation effect upon treatment. To further characterize DHM-induced methylation changes, we used published DNA methylation clocks and newly established age predictors to demonstrate that the DHM-induced methylation change is associated with a reduction in the biological age of the cells. Further studies also revealed re-activation of age-dependently hypermethylated and silenced genes in vivo and a reduction in age-dependent epidermal thinning in a 3-dimensional skin model. Our findings thus establish DHM as an epigenetic inhibitor with rejuvenating effects for aged human skin.

10.
Mol Syst Biol ; 18(9): e11073, 2022 09.
Article in English | MEDLINE | ID: mdl-36121124

ABSTRACT

Keratinocyte cancers (KC) are the most prevalent malignancies in fair-skinned populations, posing a significant medical and economic burden to health systems. KC originate in the epidermis and mainly comprise basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). Here, we combined single-cell multi-omics, transcriptomics, and methylomics to investigate the epigenomic dynamics during epidermal differentiation. We identified ~3,800 differentially accessible regions between undifferentiated and differentiated keratinocytes, corresponding to regulatory regions associated with key transcription factors. DNA methylation at these regions defined AK/cSCC subtypes with epidermal stem cell- or keratinocyte-like features. Using cell-type deconvolution tools and integration of bulk and single-cell methylomes, we demonstrate that these subclasses are consistent with distinct cells-of-origin. Further characterization of the phenotypic traits of the subclasses and the study of additional unstratified KC entities uncovered distinct clinical features for the subclasses, linking invasive and metastatic KC cases with undifferentiated cells-of-origin. Our study provides a thorough characterization of the epigenomic dynamics underlying human keratinocyte differentiation and uncovers novel links between KC cells-of-origin and their prognosis.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Epigenomics , Humans , Keratinocytes/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcription Factors
11.
J Med Chem ; 65(14): 9750-9788, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35849534

ABSTRACT

Selective manipulation of the epitranscriptome could be beneficial for the treatment of cancer and also broaden the understanding of epigenetic inheritance. Inhibitors of the tRNA methyltransferase DNMT2, the enzyme catalyzing the S-adenosylmethionine-dependent methylation of cytidine 38 to 5-methylcytidine, were designed, synthesized, and analyzed for their enzyme-binding and -inhibiting properties. For rapid screening of potential DNMT2 binders, a microscale thermophoresis assay was established. Besides the natural inhibitors S-adenosyl-l-homocysteine (SAH) and sinefungin (SFG), we identified new synthetic inhibitors based on the structure of N-adenosyl-2,4-diaminobutyric acid (Dab). Structure-activity relationship studies revealed the amino acid side chain and a Y-shaped substitution pattern at the 4-position of Dab as crucial for DNMT2 inhibition. The most potent inhibitors are alkyne-substituted derivatives, exhibiting similar binding and inhibitory potencies as the natural compounds SAH and SFG. CaCo-2 assays revealed that poor membrane permeabilities of the acids and rapid hydrolysis of an ethylester prodrug might be the reasons for the insufficient activity in cellulo.


Subject(s)
Methyltransferases , Neoplasms , Archaeal Proteins , Caco-2 Cells , DNA , Humans , Neoplasms/drug therapy , S-Adenosylhomocysteine/chemistry , S-Adenosylhomocysteine/metabolism , S-Adenosylhomocysteine/pharmacology , S-Adenosylmethionine/metabolism
12.
Front Vet Sci ; 9: 1107843, 2022.
Article in English | MEDLINE | ID: mdl-36713882

ABSTRACT

Biomarkers for holistic animal welfare monitoring represent a considerable unmet need in veterinary medicine. Epigenetic modifications, like DNA methylation, provide important information about cellular states and environments, which makes them highly attractive for biomarker development. Up until now, much of the corresponding research has been focused on human cancers. However, the increasing availability of animal genomes and epigenomes has greatly improved our capacity for epigenetic biomarker development. In this review, we provide an overview about animal DNA methylation patterns and the technologies that enable the analysis of these patterns. We also describe the key frameworks for compound DNA methylation biomarkers, DNA methylation clocks and environment-specific DNA methylation signatures, that allow complex, context-dependent readouts about animal health and disease. Finally, we provide practical examples for how these biomarkers could be applied for health and environmental exposure monitoring, two key aspects of animal welfare assessments. Taken together, our article provides an overview about the molecular and biological foundations for the development of epigenetic biomarkers in veterinary science and their application potential in animal welfare monitoring.

13.
Cancers (Basel) ; 13(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34885162

ABSTRACT

Cancer is a major public health burden worldwide. Tumor formation is caused by multiple intrinsic and extrinsic factors. Many reports have demonstrated a positive correlation between the burden of infectious pathogens and the occurrence of cancers. However, the mechanistic link between pathogens and cancer development remains largely unclear and is subject to active investigations. Apart from somatic mutations that have been widely linked with various cancers, an appreciable body of knowledge points to alterations of host epigenetic patterns as key triggers for cancer development. Several studies have associated various infectious pathogens with epigenetic modifications. It is therefore plausible to assume that pathogens induce carcinogenesis via alteration of normal host epigenetic patterns. Thus, Africa with its disproportionate burden of infectious pathogens is threatened by a dramatic increase in pathogen-mediated cancers. To curb the potential upsurge of such cancers, a better understanding of the role of tropical pathogens in cancer epigenetics could substantially provide resources to improve cancer management among Africans. Therefore, this review discusses cancer epigenetic studies in Africa and the link between tropical pathogens and cancer burden. In addition, we discuss the potential mechanisms by which pathogens induce cancers and the opportunities and challenges of tropical pathogen-induced epigenetic changes for cancer prevention, detection and management.

14.
Front Cell Dev Biol ; 9: 794506, 2021.
Article in English | MEDLINE | ID: mdl-34957121

ABSTRACT

DNA methylation is an important epigenetic modification that has been repeatedly implied in organismal adaptation. However, many previous studies that have linked DNA methylation patterns to environmental parameters have been limited by confounding factors, such as cell-type heterogeneity and genetic variation. In this study, we analyzed DNA methylation variation in marbled crayfish, a clonal and invasive freshwater crayfish that is characterized by a largely tissue-invariant methylome and negligible genetic variation. Using a capture-based subgenome bisulfite sequencing approach that covers a small, variably methylated portion of the marbled crayfish genome, we identified specific and highly localized DNA methylation signatures for specimens from geographically and ecologically distinct wild populations. These results were replicated both biologically and technically by re-sampling at different time points and by using independent methodology. Finally, we show specific methylation signatures for laboratory animals and for laboratory animals that were reared at a lower temperature. Our results thus demonstrate the existence of context-dependent DNA methylation signatures in a clonal animal.

15.
Commun Biol ; 4(1): 1096, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535758

ABSTRACT

The marbled crayfish (Procambarus virginalis) is a triploid and parthenogenetic freshwater crayfish species that has colonized diverse habitats around the world. Previous studies suggested that the clonal marbled crayfish population descended as recently as 25 years ago from a single specimen of P. fallax, the sexually reproducing parent species. However, the genetic, phylogeographic, and mechanistic origins of the species have remained enigmatic. We have now constructed a new genome assembly for P. virginalis to support a detailed phylogeographic analysis of the diploid parent species, Procambarus fallax. Our results strongly suggest that both parental haplotypes of P. virginalis were inherited from the Everglades subpopulation of P. fallax. Comprehensive whole-genome sequencing also detected triploid specimens in the same subpopulation, which either represent evolutionarily important intermediate genotypes or independent parthenogenetic lineages arising among the sexual parent population. Our findings thus clarify the geographic origin of the marbled crayfish and identify potential mechanisms of parthenogenetic speciation.


Subject(s)
Astacoidea/genetics , Genetic Speciation , Genome , Genotype , Phylogeography , Animals , Biological Evolution , Parthenogenesis
16.
Nucleic Acids Res ; 49(5): 2759-2776, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33591310

ABSTRACT

The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.


Subject(s)
Carrier Proteins/metabolism , DNA Damage , Protein Serine-Threonine Kinases/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Nucleus/metabolism , Cells, Cultured , Gene Expression Regulation , Mice , Nuclear Proteins/metabolism , Promoter Regions, Genetic , RNA-Binding Proteins/physiology , Ubiquitin-Protein Ligases/metabolism
17.
Commun Biol ; 4(1): 76, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462334

ABSTRACT

The domestic chicken (Gallus gallus domesticus) is the globally most important source of commercially produced meat. While genetic approaches have played an important role in the development of chicken stocks, little is known about chicken epigenetics. We have systematically analyzed the chicken DNA methylation machinery and DNA methylation landscape. While overall DNA methylation distribution was similar to mammals, sperm DNA appeared hypomethylated, which correlates with the absence of the DNMT3L cofactor in the chicken genome. Additional analysis revealed the presence of low-methylated regions, which are conserved gene regulatory elements that show tissue-specific methylation patterns. We also used whole-genome bisulfite sequencing to generate 56 single-base resolution methylomes from various tissues and developmental time points to establish an LMR-based DNA methylation clock for broiler chicken age prediction. This clock was used to demonstrate epigenetic age acceleration in animals with experimentally induced inflammation. Our study provides detailed insights into the chicken methylome and suggests a novel application of the DNA methylation clock as a marker for livestock health.


Subject(s)
Chickens/metabolism , DNA Methylation , Epigenesis, Genetic , Epigenome , Animals , Chickens/genetics
18.
Commun Biol ; 4(1): 74, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462402

ABSTRACT

The marbled crayfish (Procambarus virginalis) represents a very recently evolved parthenogenetic freshwater crayfish species that has invaded diverse habitats in Europe and in Madagascar. However, population genetic analyses have been hindered by the homogeneous genetic structure of the population and the lack of suitable tools for data analysis. We have used whole-genome sequencing to characterize reference specimens from various known wild populations. In parallel, we established a whole-genome sequencing data analysis pipeline for the population genetic analysis of nearly monoclonal genomes. Our results provide evidence for systematic genetic differences between geographically separated populations and illustrate the emerging differentiation of the marbled crayfish genome. We also used mark-recapture population size estimation in combination with genetic data to model the growth pattern of marbled crayfish populations. Our findings uncover evolutionary dynamics in the marbled crayfish genome over a very short evolutionary timescale and identify the rapid growth of marbled crayfish populations as an important factor for ecological monitoring.


Subject(s)
Astacoidea/genetics , Biological Evolution , Genome , Parthenogenesis , Animals , Europe , Phylogeography , Population Growth
19.
Front Genet ; 12: 797747, 2021.
Article in English | MEDLINE | ID: mdl-35069694

ABSTRACT

The dermal sheath (DS) is a population of mesenchyme-derived skin cells with emerging importance for skin homeostasis. The DS includes hair follicle dermal stem cells, which exhibit self-renewal and serve as bipotent progenitors of dermal papilla (DP) cells and DS cells. Upon aging, stem cells exhibit deficiencies in self-renewal and their number is reduced. While the DS of mice has been examined in considerable detail, our knowledge of the human DS, the pathways contributing to its self-renewal and differentiation capacity and potential paracrine effects important for tissue regeneration and aging is very limited. Using single-cell RNA sequencing of human skin biopsies from donors of different ages we have now analyzed the transcriptome of 72,048 cells, including 50,149 fibroblasts. Our results show that DS cells that exhibit stem cell characteristics were lost upon aging. We further show that HES1, COL11A1, MYL4 and CTNNB1 regulate DS stem cell characteristics. Finally, the DS secreted protein Activin A showed paracrine effects on keratinocytes and dermal fibroblasts, promoting proliferation, epidermal thickness and pro-collagen production. Our work provides a detailed description of human DS identity on the single-cell level, its loss upon aging, its stem cell characteristics and its contribution to a juvenile skin phenotype.

20.
EMBO J ; 40(6): e105496, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33283887

ABSTRACT

Methylation of carbon-5 of cytosines (m5 C) is a post-transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5 C-methyltransferases have been studied, the impact of the global cytosine-5 methylome on development, homeostasis and stress remains unknown. Here, using Caenorhabditis elegans, we generated the first organism devoid of m5 C in RNA, demonstrating that this modification is non-essential. Using this genetic tool, we determine the localisation and enzymatic specificity of m5 C sites in the RNome in vivo. We find that NSUN-4 acts as a dual rRNA and tRNA methyltransferase in C. elegans mitochondria. In agreement with leucine and proline being the most frequently methylated tRNA isoacceptors, loss of m5 C impacts the decoding of some triplets of these two amino acids, leading to reduced translation efficiency. Upon heat stress, m5 C loss leads to ribosome stalling at UUG triplets, the only codon translated by an m5 C34-modified tRNA. This leads to reduced translation efficiency of UUG-rich transcripts and impaired fertility, suggesting a role of m5 C tRNA wobble methylation in the adaptation to higher temperatures.


Subject(s)
5-Methylcytosine/metabolism , Adaptation, Physiological/genetics , Caenorhabditis elegans/genetics , Heat-Shock Response/genetics , RNA Processing, Post-Transcriptional/genetics , Animals , CRISPR-Cas Systems/genetics , Caenorhabditis elegans/physiology , Cytosine/chemistry , Gene Editing , Hot Temperature , Leucine/chemistry , Methyltransferases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Proline/chemistry , Protein Biosynthesis/genetics , Protein Biosynthesis/physiology , RNA/chemistry , RNA/genetics , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...