Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38921921

ABSTRACT

Photocatalysis is a prominent alternative wastewater treatment technique that has the potential to completely degrade pesticides as well as other persistent organic pollutants, leading to detoxification of wastewater and thus paving the way for its efficient reuse. In addition to the more conventional photocatalysts (e.g., TiO2, ZnO, etc.) that utilize only UV light for activation, the interest of the scientific community has recently focused on the development and application of visible light-activated photocatalysts like g-C3N4. However, some disadvantages of g-C3N4, such as the high recombination rate of photogenerated charges, limit its utility. In this light, the present study focuses on the synthesis of WO3 fibers/g-C3N4 Z-scheme heterojunctions to improve the efficiency of g-C3N4 towards the photocatalytic removal of the widely used insecticide clothianidin. The effect of two different g-C3N4 precursors (urea and thiourea) and of WO3 fiber content on the properties of the synthesized composite materials was also investigated. All aforementioned materials were characterized by a number of techniques (XRD, SEM-EDS, ATR-FTIR, Raman spectroscopy, DRS, etc.). According to the results, mixing 6.5% W/W WO3 fibers with either urea or thiourea derived g-C3N4 significantly increased the photocatalytic activity of the resulting composites compared to the precursor materials. In order to further elucidate the effect of the most efficient composite photocatalyst in the degradation of clothianidin, the generated transformation products were tentatively identified through UHPLC tandem high-resolution mass spectroscopy. Finally, the detoxification effect of the most efficient process was also assessed by combining the results of an in-vitro methodology and the predictions of two in-silico tools.

2.
Chemosphere ; 352: 141477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387662

ABSTRACT

The presence of emerging contaminants in environmental aqueous matrices is an ever-growing problem, since conventional wastewater treatment methods fail to adequately remove them. Therefore, the application of non-conventional methodologies such as advanced oxidation processes is of great importance to tackle this modern problem. Photocatalysis as well as catalytic activation of persulfates are promising techniques in this field as they are capable of eliminating various emerging contaminants, and current research aims to develop new materials that can be utilized for both processes. In this light, the present study focused on the use of a simple sol-gel-combustion methodology to synthesize Cu-substituted LaNiO3 perovskite materials in an attempt to improve the photocatalytic and catalytic performance of pure LaNiO3, using molar ratios of Cu:Ni that have not been previously reported in the literature. The morphological, structural, and optical features of the synthesized materials were characterized by a series of analytical techniques (e.g., X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, diffuse reflectance spectroscopy, etc.). Also, their performance as photocatalysts, persulfate anion activators and simultaneously as photocatalysts/persulfate anion activators (hybrid) was evaluated by conducting laboratory-scale experiments using phenol (phenolics) as a model emerging contaminant. Interestingly, the results revealed that LaCu0.25Ni0.75O3 exhibited the best efficiency in all the applied processes, which was mainly attributed to the introduction of oxygen vacancies in the structure of the substituted material. The contribution of selected reactive species in the hybrid photocatalytic/catalytic experiments utilizing LaCu0.25Ni0.75O3 as a (photo)catalyst was investigated using appropriate scavengers, and the results suggested that singlet oxygen is the most dominant. Additionally, the stability of all synthesized perovskites was assessed by monitoring the concentration of the leached Cu and/or Ni cations at the end of every applied process. Finally, the reusability of LaCu0.25Ni0.75O3 was evaluated in three consecutive catalytic cycles using the hybrid experiment methodology, as this process demonstrated the best efficiency in terms of phenolics removal, and the results were rather promising.


Subject(s)
Calcium Compounds , Environmental Pollutants , Oxides , Water , Titanium/chemistry , Phenol , Phenols , Catalysis
3.
Sci Total Environ ; 870: 161877, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36716886

ABSTRACT

Nowadays, the increased consumption of antibiotics, such as metronidazole (MTZ), leads to their introduction in wastewater as well as in the receiving surface waters due to their incomplete removal by conventional wastewater treatment plants. Heterogeneous photocatalysis is a versatile technology that can efficiently degrade such organic contaminants. In the present research, the photocatalytic degradation of MTZ with TiO2 P25 was studied under lab and pilot (CPC reactor) conditions. The antibiotic was efficiently removed at high rates in both cases (100 % and 91 %) following pseudo-first order kinetics with rate constants equal to 0.0452 min-1 (±RSD% = 0.68 % - 2.57 %) and 0.0462 L KJ-1 (±RSD% = 8.94 % - 21.64 %) respectively. Also, by scavenging lab scale experiments, the contribution of the generated reactive species was investigated and hydroxy radicals (HO•) were proposed as the predominant species. By applying high resolution mass spectrometry techniques, the transformation products (TPs) were identified and possible transformation pathways were proposed. The ecotoxicity of the TPs was assessed in silico using the ECOSAR software with the results revealing that most of them were less toxic than the parent compound. Similarly, the mutagenicity, developmental toxicity and bioconcentration factors of the TPs were predicted by utilizing the T.E.S.T. software and in their majority, were found to be less mutagenic and developmentally toxic than MTZ. The ecotoxicity monitoring with the Vibrio fischeri bioassay in both laboratory and pilot scale experiments indicated that through heterogeneous photocatalysis it is possible to reduce the toxicity of wastewater containing MTZ. Finally, the stability and reusability of the photocatalyst was investigated through three consecutive catalytic cycles with the results showing that the performance of TiO2 decreased after each use. For the heterogeneous photocatalysis with TiO2 to be a "real life" applicable technique, further studies focusing on catalyst regeneration and optimization of the catalytic conditions must be conducted.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Metronidazole/analysis , Wastewater , Titanium/chemistry , Catalysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...