Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 16(9): e1009010, 2020 09.
Article in English | MEDLINE | ID: mdl-32956375

ABSTRACT

Essential tremor (ET) is the most common adult-onset movement disorder. In the present study, we performed whole exome sequencing of a large ET-affected family (10 affected and 6 un-affected family members) and identified a TUB p.V431I variant (rs75594955) segregating in a manner consistent with autosomal-dominant inheritance. Subsequent targeted re-sequencing of TUB in 820 unrelated individuals with sporadic ET and 630 controls revealed significant enrichment of rare nonsynonymous TUB variants (e.g. rs75594955: p.V431I, rs1241709665: p.Ile20Phe, rs55648406: p.Arg49Gln) in the ET cohort (SKAT-O test p-value = 6.20e-08). TUB encodes a transcription factor predominantly expressed in neuronal cells and has been previously implicated in obesity. ChIP-seq analyses of the TUB transcription factor across different regions of the mouse brain revealed that TUB regulates the pathways responsible for neurotransmitter production as well thyroid hormone signaling. Together, these results support the association of rare variants in TUB with ET.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Essential Tremor/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aged , Aged, 80 and over , Animals , Chromatin Immunoprecipitation Sequencing/methods , Cohort Studies , Exome/genetics , Family , Female , Humans , Male , Mice, Inbred C57BL , Middle Aged , Pedigree , Polymorphism, Single Nucleotide/genetics , Transcription Factors/genetics , Exome Sequencing/methods
2.
J Clin Invest ; 127(5): 1978-1990, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28414301

ABSTRACT

The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice.


Subject(s)
Autistic Disorder , Corpus Striatum , Nerve Tissue Proteins , Neuronal Plasticity/genetics , Substantia Nigra , Synaptic Transmission/genetics , Animals , Autistic Disorder/genetics , Autistic Disorder/metabolism , Autistic Disorder/physiopathology , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Disease Models, Animal , Humans , Mice , Mice, Knockout , Microfilament Proteins , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Substantia Nigra/metabolism , Substantia Nigra/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...