Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Toxicol Sci ; 175(2): 220-235, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32170957

ABSTRACT

Zileuton is an orally active inhibitor of leukotriene synthesis for maintenance treatment of asthma, for which clinical usage has been associated with idiosyncratic liver injury. Mechanistic understanding of zileuton toxicity is hampered by the rarity of the cases and lack of an animal model. A promising model for mechanistic study of rare liver injury is the Diversity Outbred (J:DO) mouse population, with genetic variation similar to that found in humans. In this study, female DO mice were administered zileuton or vehicle daily for 7 days (i.g.). Serum liver enzymes were elevated in the zileuton group, with marked interindividual variability in response. Zileuton exposure-induced findings in susceptible DO mice included microvesicular fatty change, hepatocellular mitosis, and hepatocellular necrosis. Inducible nitric oxide synthase and nitrotyrosine abundance were increased in livers of animals with necrosis and those with fatty change, implicating nitrosative stress as a possible injury mechanism. Conversely, DO mice lacking adverse liver pathology following zileuton exposure experienced decreased hepatic concentrations of resistin and increased concentrations of insulin and leptin, providing potential clues into mechanisms of toxicity resistance. Transcriptome pathway analysis highlighted mitochondrial dysfunction and altered fatty acid oxidation as key molecular perturbations associated with zileuton exposure, and suggested that interindividual differences in cytochrome P450 metabolism, glutathione-mediated detoxification, and farnesoid X receptor signaling may contribute to zileuton-induced liver injury (ZILI). Taken together, DO mice provided a platform for investigating mechanisms of toxicity and resistance in context of ZILI which may lead to targeted therapeutic interventions.


Subject(s)
Chemical and Drug Induced Liver Injury/physiopathology , Genetic Predisposition to Disease , Homeostasis/drug effects , Hydroxyurea/toxicity , Lipids/biosynthesis , Nitrosative Stress/drug effects , Stress, Physiological/drug effects , Animals , Anti-Asthmatic Agents/toxicity , Asthma/drug therapy , Collaborative Cross Mice , Disease Models, Animal , Female , Mice
2.
Pharmacol Res Perspect ; 5(2): e00299, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28357125

ABSTRACT

Individual differences in drug metabolism contribute to interindividual variation that characterizes responses to drugs and risk in exposure to foreign chemicals. Large individual differences are found in expression levels of CYP1A2, a major drug-metabolizing enzyme. Underlying causes for this variation are not well understood. Several factors, including tobacco smoking, consumption of cruciferous vegetables, and sex, have been associated with modulating CYP1A2 expression. To understand factors regulating expression of CYP1A2 in establishing a causal relationship, this study examined effects of cigarette smoke condensate (CSC), indole-3-carbinol (I3C), and 17ß-estradiol (estradiol) on CYP1A2 expression in in vitro systems using human liver and lung cells. Treatment with CSC (2-25 µg/mL) significantly increased levels of CYP1A2 in six cell lines examined, in a concentration- and time-dependent manner. Fold changes in expression levels relative to controls varied among cell lines. CYP1A2 enzymatic activity also increased with CSC exposure. Treatment of H1299 and HepB3 cells with dietary agent I3C (50 and 100 µmol/L) increased CYP1A2 expression. In human cell lines H1299 and H1395, treatment with estradiol (10 and 100 nmol/L) significantly reduced expression of CYP1A2. Using ChIP assays, effects of CSC on histone modifications were analyzed. Increases in H3K4me3 and H4K16ac were observed at several segments in the CYP1A2 gene, whereas H3K27me3 decreased, following CSC treatment. These results suggest that CYP1A2 expression is affected epigenetically by CSC. Additional studies will be needed to further establish regulatory mechanisms underlying effects of various environmental, dietary, and endogenous factors on CYP1A2 expression in better predicting individual variation.

3.
J Vis Exp ; (111)2016 05 04.
Article in English | MEDLINE | ID: mdl-27166647

ABSTRACT

Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.


Subject(s)
Comet Assay , DNA Damage , Animals , DNA , DNA Repair , Humans , Liver , Rats
4.
Int J Toxicol ; 34(2): 182-94, 2015.
Article in English | MEDLINE | ID: mdl-25800266

ABSTRACT

Tobacco use is the leading preventable cause of death. The cytotoxicity of cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke without the vapor phase, has mostly been tested in short-term in vitro studies lasting from a few hours to a few days. Here, we assessed the toxicity of CSCs from 2 reference cigarettes, 3R4F and CM6, using a primary human small airway epithelial (PSAE) cell line by quantifying adenosine 5'-triphosphate (ATP), 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), total glutathione (reduced glutathione [GSH] + oxidized glutathione [GSSG]), and lactate dehydrogenase (LDH) release over the course of 28 days. The CSCs, 0.3 to 10 µg/mL, promoted cell proliferation at 120 hours of exposure, but demonstrated cytotoxicity at days 14 and 28. Interestingly, CSCs, 0.3 to 3 µg/mL, showed a cell death effect at day 14 but induced cell proliferation at day 28. Consistently, transformation associated with morphological changes began by day 14 and the transformed cells grew dramatically at day 28. The LDH assay appeared to be sensitive for assessing early cell damage, whereas the ATP, MTS, and GSH assays were more suitable for determining later stage CSCs-induced cytotoxicity. The ATP assay showed greater sensitivity than the MTS and GSH assays. We also assessed the toxicity of CSCs in an human Telomerase Reverse Transcriptase (hTERT)-immortalized Barrett esophagus cell line (CP-C). The CP-C cells demonstrated dose- and time-dependent cytotoxicity over the course of 28 days but displayed higher resistance to CSCs than PSAE cells. This study demonstrates that CSCs cause cytotoxicity and induce transformation related to cell resistance and cell invasion properties.


Subject(s)
Respiratory Mucosa/drug effects , Smoking/adverse effects , Adenosine Triphosphate/analysis , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Glutathione/analysis , Humans , L-Lactate Dehydrogenase/analysis , Respiratory Mucosa/chemistry , Tetrazolium Salts/analysis , Thiazoles/analysis
5.
Environ Mol Mutagen ; 56(4): 356-65, 2015 May.
Article in English | MEDLINE | ID: mdl-25361439

ABSTRACT

Estragole, a naturally occurring constituent of various herbs and spices, is a rodent liver carcinogen which requires bio-activation. To further understand the mechanisms underlying its carcinogenicity, genotoxicity was assessed in F344 rats using the comet, micronucleus (MN), and DNA adduct assays together with histopathological analysis. Oxidative damage was measured using human 8-oxoguanine-DNA-N-glycosylase (hOGG1) and EndonucleaseIII (EndoIII)-modified comet assays. Results with estragole were compared with the structurally related genotoxic carcinogen, safrole. Groups of seven-week-old male F344 rats received corn oil or corn oil containing 300, 600, or 1,000 mg/kg bw estragole and 125, 250, or 450 mg/kg bw safrole by gavage at 0, 24, and 45 hr and terminated at 48 hr. Estragole-induced dose-dependent increases in DNA damage following EndoIII or hOGG1 digestion and without enzyme treatment in liver, the cancer target organ. No DNA damage was detected in stomach, the non-target tissue for cancer. No elevation of MN was observed in reticulocytes sampled from peripheral blood. Comet assays, both without digestion or with either EndoIII or hOGG1 digestion, also detected DNA damage in the liver of safrole-dosed rats. No DNA damage was detected in stomach, nor was MN elevated in peripheral blood following dosing with safrole suggesting that, as far both safrole and estragole, oxidative damage may contribute to genotoxicity. Taken together, these results implicate multiple mechanisms of estragole genotoxicity. DNA damage arises from chemical-specific interaction and is also mediated by oxidative species.


Subject(s)
Anisoles/toxicity , Mutagenicity Tests/methods , Allylbenzene Derivatives , Animals , Comet Assay/methods , DNA Adducts , DNA Damage/drug effects , DNA Glycosylases/metabolism , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Male , Micronucleus Tests , Rats, Inbred F344 , Safrole/toxicity , Stomach/drug effects
6.
SAGE Open Med ; 3: 2050312115578317, 2015.
Article in English | MEDLINE | ID: mdl-26770776

ABSTRACT

OBJECTIVES: Previous studies found higher expression levels of DNA methyltransferase 1 in liver samples from smokers compared to those from non-smokers. In contrast, expression levels of DNA methyltransferase 3a and DNA methyltransferase 3b were similar in smokers and non-smokers. This study extends these studies to establish a causal linkage to cigarette smoke exposure by examining whether DNA methyltransferase expression is modulated by cigarette smoke condensate. METHODS: These experiments were conducted in an in vitro system using HepG2 human liver cells. The dose range of cigarette smoke condensate was 0.1-120 µg/mL. The duration of exposure was up to 72 h. RESULTS: In a 24-h exposure, DNA methyltransferase 1 expression was found to increase significantly in a dose-dependent manner (greater than threefold at 100 µg/mL cigarette smoke condensate). Expression levels of DNA methyltransferase 3a and DNA methyltransferase 3b were, however, not affected under these conditions. The effect of two cigarette constituents, nicotine and cotinine, on DNA methyltransferase 1 expression was also examined. Nicotine exposure significantly increased DNA methyltransferase 1 expression in a dose-dependent manner (greater than twofold at 50 µM). However, under these conditions, cotinine did not increase DNA methyltransferase 1 expression. CONCLUSION: These results clearly provide additional support of the modulating effect of cigarette smoke on DNA methyltransferase 1 expression. Given the potential of alterations in DNA methyltransferase expression to affect cellular function, this pathway may play a critical role in cigarette smoke-induced toxicity.

7.
Article in English | MEDLINE | ID: mdl-25440904

ABSTRACT

Cyproterone acetate (CPA), a synthetic hormonal drug, induces rat liver tumors in a sex-specific manner, with five-fold higher doses needed to induce liver tumors in male rats compared to females. In order to evaluate the potential of the in vivo alkaline Comet assay to predict the sex-specific carcinogenicity of CPA, CPA-induced direct DNA damage (DNA strand breaks and alkali-labile sites) were evaluated in the livers of both male and female F344 rats. In addition, secondary oxidative DNA damage was measured concurrently utilizing the human 8-oxoguanine-DNA-N-glycosylase (hOGG1) and EndonucleaseIII (EndoIII)-modified in vivo alkaline Comet assays and the reticulocyte micronucleus (MN) frequency was analyzed in peripheral blood. Groups of 5 seven-week-old male and female F344 rats received olive oil or 10, 25, 50 or 100 mg/kg bw CPA in olive oil by gavage at 0, 24, and 45 h and were sacrificed at 48 h. CPA-induced direct DNA damage in rat liver showed the same sex-specific pattern as its hepatotumorigenicity: a five-fold-higher dose of CPA was needed to induce a statistically significant increase in direct DNA damage in livers of males compared to females. However, peripheral blood MN frequency was weak in both sexes and CPA-induced oxidative DNA damage was generally greater in male than female rat livers. Taken together, our results demonstrate concordance in the sex-specificity of CPA in the in vivo alkaline Comet assay and cancer bioassay, while the induction of oxidative DNA damage by CPA was not directly correlated with its tumorigenicity.


Subject(s)
Comet Assay/methods , Cyproterone Acetate/toxicity , DNA Damage , Liver/drug effects , Micronucleus Tests/methods , Animals , Dose-Response Relationship, Drug , Female , Humans , Male , Mammary Glands, Human/drug effects , Micronuclei, Chromosome-Defective/drug effects , Olive Oil , Oxidation-Reduction/drug effects , Plant Oils/administration & dosage , Rats , Rats, Inbred F344 , Reticulocytes/drug effects , Sex Characteristics , Testis/drug effects
8.
Tob Induc Dis ; 12(1): 15, 2014.
Article in English | MEDLINE | ID: mdl-25214829

ABSTRACT

BACKGROUND: In lung cancer, an association between tobacco smoking and promoter DNA hypermethylation has been demonstrated for several genes. However, underlying mechanisms for promoter hypermethylation in tobacco-induced cancer are yet to be fully established. METHODS: Promoter methylation was evaluated in control and cigarette smoke condensate (CSC) exposed human lung cells using the Methyl-Profiler DNA Methylation PCR System. PSAE cells were exposed to 0.3 or 1.0 µg/ml CSC for 72 hours and longer term for 14 and 30 days. NL-20 cells were exposed for 30 days to 10 or 100 µg/ml CSC. RESULTS: Promoters of several genes, including hsa-let-7a-3, CHD1, CXCL12, PAX5, RASSF2, and TCF21, were highly methylated (>90%); hsa-let-7a-3 was affected in both cell lines and under all exposure conditions. Level of methylation tended to increase with CSC concentration and exposure duration (statistical differences were not determined). Percentage methylation of TCF21, which was >98% at exposures of 10 or 100 µg/ml CSC, was found to be reduced to 28% and 42%, respectively, in the presence of the dietary agent genistein. CONCLUSIONS: Using array techniques, several tumor suppressor genes in human lung cells were identified that undergo promoter hypermethylation, providing further evidence of their potential involvement in tobacco smoke-induced lung carcinogenesis and their use as potential biomarkers of harm in tobacco smoke exposure. Results from the study also demonstrated the potential of a dietary agent to exert chemopreventive activity in human tissue against tobacco smoke related diseases through modulation of DNA methylation. Additional studies are needed to confirm these findings.

9.
Environ Mol Mutagen ; 55(1): 24-34, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24155181

ABSTRACT

Doxorubicin (DOX) is an antineoplastic drug effective against many human malignancies. DOX's clinical efficacy is greatly limited because of severe cardiotoxicity. To evaluate if DOX is genotoxic in the heart, ~7-week-old, male F344 rats were administered intravenously 1, 2, and 3 mg/kg bw DOX at 0, 24, 48, and 69 hr and the Comet assays in heart, liver, kidney, and testis and micronucleus (MN) assay in the peripheral blood (PB) erythrocytes using flow cytometry were conducted. Rats were euthanized at 72 hr and PB was removed for the MN assay and single cells were isolated from multiple tissues for the Comet assays. None of the doses of DOX induced a significant DNA damage in any of the tissues examined by the alkaline Comet assay. Contrastingly, the glycosylase enzymes-modified Comet assay showed a significant dose dependent increase in the oxidative DNA damage in the cardiac tissue (P ≤ 0.05). In the liver, only the top dose induced significant increase in the oxidative DNA damage (P ≤ 0.05). The histopathology showed no severe cardiotoxicity but non-neoplastic lesions were present in both untreated and treated samples. A severe toxicity likely occurred in the bone marrow because no viable reticulocytes could be screened for the MN assay. Gene expression profiling of the heart tissues showed a significant alteration in the expression of 11 DNA damage and repair genes. These results suggest that DOX is genotoxic in the heart and the DNA damage may be induced primarily via the production of reactive oxygen species.


Subject(s)
Comet Assay/methods , Doxorubicin/toxicity , Gene Expression Profiling/methods , Micronucleus Tests/methods , Mutagenicity Tests/methods , Animals , Bone Marrow/drug effects , DNA Damage/drug effects , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Flow Cytometry , Heart/drug effects , Kidney/drug effects , Liver/drug effects , Male , Myocardium/pathology , Rats , Rats, Inbred F344 , Testis/drug effects
10.
Int J Toxicol ; 32(1): 23-31, 2013.
Article in English | MEDLINE | ID: mdl-23174910

ABSTRACT

Establishing early diagnostic markers of harm is critical for effective prevention programs and regulation of tobacco products. This study examined effects of cigarette smoke condensate (CSC) on expression and promoter methylation profile of critical genes (DAPK, ECAD, MGMT, and RASSF1A) involved in lung cancer development in different human lung cell lines. NL-20 cells were treated with 0.1-100 µg/ml of CSC for 24 to 72 hrs for short-term exposures. DAPK expression or methylation status was not significantly affected. However, CSC treatment resulted in changes in expression and promoter methylation profile of ECAD, MGMT, and RASSF1A. For chronic studies, cells were exposed to 1 or 10 µg/ml CSC up to 28 days. Cells showed morphological changes associated with transformation and changes in invasion capacities and global methylation status. This study provides critical data suggesting that epigenetic changes could serve as an early biomarker of harm due to exposure to cigarette smoke.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation/genetics , Gene Expression , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Smoking/adverse effects , Apoptosis Regulatory Proteins/genetics , Cadherins/genetics , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Cell Culture Techniques , Cell Line, Tumor , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Data Interpretation, Statistical , Death-Associated Protein Kinases , Dose-Response Relationship, Drug , Humans , Lung Neoplasms/pathology , Polymerase Chain Reaction , Promoter Regions, Genetic , Tumor Suppressor Proteins/genetics
11.
Toxicol Sci ; 123(1): 103-12, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21659616

ABSTRACT

Methyleugenol (MEG), a constituent of human food, induces malignant tumors in multiple tissues of rats and mice. Although MEG forms DNA adducts and induces unscheduled DNA synthesis in rat liver, it is negative in many in vitro genetic toxicity assays. In the present study, we evaluated MEG-induced DNA damage in the rat using (1) the alkaline Comet assay, (2) the oxidative Comet assay, and (3) expression profiling of genes associated with DNA damage pathways. Male F344 rats received single oral doses of 400 or 1000 mg/kg body weight (bw) MEG and DNA damage was assessed by the Comet assay in liver, bladder, bone marrow, kidney, and lung 3 h and 24 h later. MEG failed to produce any increase in DNA damage. In addition, rats were given a single oral dose of 2000 mg/kg bw MEG, and Comet assays were performed with liver, bone marrow, and bladder 1, 3, 6, and 8 h later. With one exception (bone marrow at 8 h), no DNA damage was detected. Enzyme-modified Comet assays were conducted in parallel with standard Comet assays in liver. Whereas no MEG-induced DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in increases in DNA damage at the 6- and 8-h sampling times. Gene expression analysis on the livers from MEG-exposed rats showed significant reduction in genes associated with DNA repair. The results indicate that MEG induces DNA damage in rat liver and that oxidative DNA damages may be partly responsible for the genotoxicity of MEG in rodents.


Subject(s)
Comet Assay , DNA Damage , DNA/drug effects , Eugenol/analogs & derivatives , Gene Expression Regulation/drug effects , Mutagens/toxicity , Animals , Bone Marrow Cells/drug effects , DNA Repair/drug effects , DNA Repair/genetics , Deoxyribonucleases, Type III Site-Specific/genetics , Deoxyribonucleases, Type III Site-Specific/metabolism , Eugenol/classification , Eugenol/toxicity , Gene Expression Profiling , Liver/drug effects , Male , Mutagens/classification , Oxidation-Reduction , Rats , Rats, Inbred F344 , Urinary Bladder/drug effects
12.
Toxicol Ind Health ; 27(1): 11-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20713430

ABSTRACT

Acrylamide has been discovered in foods cooked at high temperature. A potentially harmful effect of this dietary component has been suggested by data indicating its association with increased breast cancer. This study investigated the potential effects of acrylamide in nontumorigenic breast cells by assessing expression levels of inducible nitric oxide synthase (iNOS) and cycloogenase-2 (Cox-2) and NOS activity, which are known to be early molecular changes in disease formation. Treatment of cells with acrylamide increased levels of iNOS (both expression and activity) and Cox-2. Its potent metabolite, glycidamide, also induced both iNOS and Cox-2, with induction of iNOS occurring at a lower concentration. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), another food-borne carcinogen, was found to induce Cox-2 expression. Combining acrylamide with PhIP did not result in a further increase. These studies suggest that further research is needed to determine the role of carcinogens formed from cooking foods in inducing early molecular changes associated with breast cancer.


Subject(s)
Acrylamide/toxicity , Carcinogens/toxicity , Cooking/methods , Cyclooxygenase 2/metabolism , Food Contamination , Nitric Oxide Synthase Type II/metabolism , Cell Line , Epithelial Cells , Epoxy Compounds/toxicity , Female , Humans , Imidazoles/toxicity
13.
J Alzheimers Dis ; 16(4): 715-29, 2009.
Article in English | MEDLINE | ID: mdl-19387108

ABSTRACT

Obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic steatohepatitis (NASH) can be complicated by cognitive impairment and neurodegeneration. Experimentally, high fat diet (HFD)-induced obesity with T2DM causes mild neurodegeneration with brain insulin resistance. Since ceramides are neurotoxic, cause insulin resistance, and are increased in T2DM, we investigated the potential role of ceramides as mediators of neurodegeneration in the HFD obesity/T2DM model. We pair-fed C57BL/6 mice with a HFD or control diet for 4-20 weeks and examined pro-ceramide gene expression in liver and brain and neurodegeneration in the temporal lobe. HFD feeding gradually increased body weight, but after 16 weeks, liver weight surged (P<0.001) due to lipid (triglyceride) accumulation (P<0.001), and brain weight declined (P<0.0001-Trend analysis). HFD feeding increased ceramide synthase, serine palmitoyl transferase, and sphingomyelinase expression in liver (P<0.05-P<0.001), but not brain. In HFD fed mice, temporal lobe levels of ubiquitin (P<0.001) and 4-hydroxynonenal (P<0.05 or P<0.01) increased, and tau, beta-actin, and choline acetyltransferase levels decreased (P<0.05-P<0.001) with development of NASH. In obesity, T2DM, or NASH, neurodegeneration with brain insulin resistance may be mediated by excess hepatic production of neurotoxic ceramides that readily cross the blood-brain barrier.


Subject(s)
Brain/metabolism , Ceramides/metabolism , Diabetes Mellitus, Type 2/pathology , Fatty Liver/metabolism , Insulin Resistance/physiology , Nerve Degeneration/etiology , Analysis of Variance , Animals , Body Weight/drug effects , Brain/drug effects , Diabetes Mellitus, Type 2/chemically induced , Dietary Fats/adverse effects , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Male , Mice , Mice, Inbred C57BL , Nerve Degeneration/metabolism , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Time Factors
14.
Comp Med ; 57(3): 282-6, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17605343

ABSTRACT

Daidzein (4',7-dihydroxyisoflavone), a soy phytoestrogen, is a weakly estrogenic compound that may have potential health benefits. Biotransformation of daidzein by the human gut microflora after ingestion converts it to either the highly estrogenic metabolite equol or to nonestrogenic metabolites. We investigated the metabolism of daidzein by colonic microflora of rats. Fecal samples, obtained before and after rats were exposed to daidzein at 250 or 1000 parts per million, were incubated in brain-heart infusion (BHI) broth with daidzein under anaerobic conditions. Samples were removed from the cultures daily and analyzed by high-performance liquid chromatography (HPLC) and mass spectrometry. The fecal bacteria of all rats, regardless of prior daidzein exposure, metabolized the added daidzein to dihydrodaidzein. Both compounds disappeared rapidly from BHI cultures incubated for more than 24 h, but no other daidzein metabolites were detected. Only daidzein and dihydrodaidzein were found in a direct analysis of the feces of rats that had consumed daidzein in their diets. Unlike the fecal bacteria of humans and monkeys, the rat flora rapidly metabolized daidzein to aliphatic compounds that could not be detected by HPLC or mass spectral analysis.


Subject(s)
Bacteria/metabolism , Feces/microbiology , Isoflavones/metabolism , Phytoestrogens/metabolism , Animals , Animals, Genetically Modified , Biotransformation , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Feces/chemistry , Gastrointestinal Tract/microbiology , Isoflavones/analysis , Isoflavones/pharmacology , Phytoestrogens/analysis , Phytoestrogens/pharmacology , Rats , Rats, Inbred F344 , Spectrometry, Mass, Electrospray Ionization/methods
15.
Carcinogenesis ; 27(12): 2555-64, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17127718

ABSTRACT

The major constituents of isoflavones, daidzein (DZ) and genistein (GE) are known to interact with the alpha and beta estrogen receptors (ERalpha/beta) in several tissues including mammary. In this study, we used ovariectomy (OVX) to model menopause and determined the effects of DZ, GE or 17beta-estradiol (E2) exposures on chemically induced mutagenesis and carcinogenesis in the mammary glands of female Big Blue (BB) transgenic rats. The rats were fed control diet containing the isoflavones and E2 and treated with a single oral dose of 7,12-dimethylbenz[a]anthracene (DMBA) at PND 50. Animals were sacrificed at 16 or 20 weeks post-carcinogen treatment to assess mutant frequencies (MFs) and histopathological parameters, respectively. The isoflavones or E2 supplementation alone resulted in modest increases in the lacI MF that were not significantly different from the MFs measured in rats fed the control diet alone. DMBA exposure, however, induced significant increases in the lacI MFs in the mammary of both OVX and ovary intact (INT) rats and Hprt MFs in spleen lymphocytes (P

Subject(s)
9,10-Dimethyl-1,2-benzanthracene/toxicity , Genistein/pharmacology , Glycine max , Isoflavones/pharmacology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/prevention & control , Animals , Animals, Genetically Modified , Female , Mutagenesis , Ovariectomy , Phytoestrogens/pharmacology , Rats
16.
Carcinogenesis ; 27(10): 1970-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16709578

ABSTRACT

The major constituents of isoflavones daidzein (DZ) and genistein (GE) interact with the and estrogen receptors in several tissues including mammary tissues. In this study, we used ovariectomy (OVX) to model menopause and determined the effects of DZ, GE or 17beta-estradiol (E(2)) exposures on chemically induced mutagenesis and carcinogenesis in the mammary glands of female Big Blue transgenic rats. The rats were fed control diet containing the isoflavones and E(2) and treated with a single oral dose of 7,12-dimethylbenz[a]anthracene (DMBA) at PND50. Animals were euthanized at 16 or 20 weeks post-carcinogen treatment to assess mutant frequencies (MFs) and histopathological parameters, respectively. The isoflavones or E(2) supplementation alone resulted in the lac I MFs that were not significantly different from the MFs measured in rats fed the control diet alone. DMBA exposure, however, induced significant increases in the lac I MFs in the mammary tissues of both OVX and INT rats and Hprt MFs in spleen lymphocytes (P < 0.01). In general, feeding the isoflavones or E(2) did not cause any significant changes in DMBA-induced mutagenicity in the mammary tissues. However, feeding the isoflavone mixture (daidzein + genistein; DZG) resulted in a significant reduction in the DMBA-induced lac I MFs (P < 0.05). Cell proliferation as measured by PCNA immunohistochemistry was increased in both OVX and INT rats exposed to DMBA as compared with rats fed control diet (P < 0.05). Mammary histology indicated that hyperplasia was induced in most of the treatment groups including control. Although DMBA did not induce mammary tumors in the OVX rats, adenoma and adenocarcinoma were detected in the mammary glands of INT rats.


Subject(s)
Genistein/administration & dosage , Isoflavones/administration & dosage , Mammary Neoplasms, Experimental/chemically induced , 9,10-Dimethyl-1,2-benzanthracene , Animals , Animals, Genetically Modified , Apoptosis/drug effects , Body Weight , Diet , Female , Hypoxanthine Phosphoribosyltransferase/genetics , Lac Operon , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/prevention & control , Mutation , Organ Size , Ovariectomy , Proliferating Cell Nuclear Antigen/analysis , Rats , Rats, Inbred BB
17.
Environ Mol Mutagen ; 47(1): 6-17, 2006 Jan.
Article in English | MEDLINE | ID: mdl-15957192

ABSTRACT

The recent discovery of acrylamide (AA), a probable human carcinogen, in a variety of fried and baked starchy foods has drawn attention to its genotoxicity and carcinogenicity. Evidence suggests that glycidamide (GA), the epoxide metabolite of AA, is responsible for the genotoxic effects of AA. To investigate the in vivo genotoxicity of AA, groups of male and female Big Blue (BB) mice were administered 0, 100, or 500 mg/l of AA or equimolar doses of GA, in drinking water, for 3-4 weeks. Micronucleated reticulocytes (MN-RETs) were assessed in peripheral blood within 24 hr of the last treatment, and lymphocyte Hprt and liver cII mutagenesis assays were conducted 21 days following the last treatment. Further, the types of cII mutations induced by AA and GA in the liver were determined by sequence analysis. The frequency of MN-RETs was increased 1.7-3.3-fold in males treated with the high doses of AA and GA (P < or = 0.05; control frequency = 0.28%). Both doses of AA and GA produced increased lymphocyte Hprt mutant frequencies (MFs), with the high doses producing responses 16-25-fold higher than that of the respective control (P < or = 0.01; control MFs = 1.5 +/- 0.3 x 10(-6) and 2.2 +/- 0.5 x 10(-6) in females and males, respectively). Also, the high doses of AA and GA produced significant 2-2.5-fold increases in liver cII MFs (P < or = 0.05; control MFs = 26.5 +/- 3.1 x 10(-6) and 28.4 +/- 4.5 x 10(-6)). Molecular analysis of the mutants indicated that AA and GA produced similar mutation spectra and that these spectra were significantly different from that of control mutants (P < or = 0.001). The predominant types of mutations in the liver cII gene from AA- and GA-treated mice were G:C-->T:A transversions and -1/+1 frameshifts in a homopolymeric run of Gs. The results indicate that both AA and GA are genotoxic in mice. The MFs and types of mutations induced by AA and GA in the liver are consistent with AA exerting its genotoxicity in BB mice via metabolism to GA.


Subject(s)
Acrylamide/toxicity , Epoxy Compounds/toxicity , Mutagens/toxicity , Animals , Female , Hypoxanthine Phosphoribosyltransferase/genetics , Liver/drug effects , Liver/metabolism , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Mice , Mice, Transgenic , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Mutation , Transcription Factors/genetics , Viral Proteins/genetics , Water Supply
18.
Nutr Cancer ; 53(1): 82-90, 2005.
Article in English | MEDLINE | ID: mdl-16351510

ABSTRACT

Phytoestrogens, primarily isoflavones daidzein (DZ) and genistein (GE), are increasingly used by postmenopausal women as an alternative to hormone replacement therapy due to reports that estrogen therapy increases the risk of breast and endometrial cancers. These compounds, as estrogen receptor agonists, may influence chemical carcinogenesis in estrogen-responsive tissues such as the uterus. We utilized ovariectomized (OVX) rats to model menopause and assessed the effects of dietary DZ, GE, or 17beta-estradiol (E2) on carcinogen-induced mutagenesis and carcinogenesis in the rat uterus. Big Blue transgenic rats (derived from Fischer 344 strain) were exposed to 7,12-dimethylbenz[a]anthracene (DMBA) in the presence or absence of the supplements. At 16- or 20-wk sacrifice, the uteri were removed and processed to determine mutant frequencies (MFs) and immunohistochemical or histopathological parameters, respectively. In rats treated with DMBA alone, a significant increase in lacI MFs (P < 0.01) in both OVX and intact (INT) rats was observed. The DMBA-induced MFs were not significantly altered by dietary DZ, GE, or E2 in both OVX and INT rats. Although dysplasia was not induced in the uterus of OVX and INT rats treated with DMBA alone, it was detected in 55% of OVX rats fed E2 alone and in 100% of OVX rats fed E2 along with DMBA exposure. Cell proliferation also was significantly higher in OVX rats fed E2 and treated with DMBA. In rats fed the isoflavones and treated with DMBA, the incidence of dysplasia was either reduced or virtually absent in both OVX and INT groups. These results indicate that a high incidence of dysplasia was associated with E2 feeding with or without DMBA treatment in the OVX rats, whereas the incidence was low in rats fed DZ or GE and treated with DMBA, suggesting a weak estrogen receptor agonist of DZ or GE in the rat uterus. The absence of dysplasia in OVX rats exposed to DMBA alone also suggests, in part, a promotional mechanism via estrogen- or isoflavone-driven cell proliferation.


Subject(s)
Estradiol/pharmacology , Genistein/pharmacology , Isoflavones/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Uterus , Animals , Animals, Genetically Modified , Benz(a)Anthracenes/toxicity , Cell Division , Drug Interactions , Female , Mutagenicity Tests , Mutation , Ovariectomy , Rats , Rats, Inbred BB , Rats, Inbred F344 , Uterus/drug effects , Uterus/pathology
19.
Environ Mol Mutagen ; 45(1): 70-9, 2005.
Article in English | MEDLINE | ID: mdl-15611980

ABSTRACT

In industrialized countries, heart disease rates are higher among women after menopause. Recent studies indicate that consumption of phytoestorogens, e.g., isoflavones such as genistein (GE), may have potential cardiovascular health benefits; however, no studies have evaluated the effect of these agents on toxicant-induced damage in the heart. Since estrogen receptors are found in the heart, and GE mimics estrogenic effects, we have examined whether or not dietary GE or 17 beta-estradiol (E2) modulates the lacI mutant frequency (MF) in the heart of ovariectomized (OVX) Big Blue rats exposed to the model carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). Groups of female rats were administered 80 mg/kg DMBA or vehicle by gavage and were chronically fed with diets containing 0, 250, or 1,000 microg/g GE or 5 microg/g E2. Sixteen weeks after carcinogen treatment, the animals were sacrificed and the hearts were removed and processed for determining the frequency and types of mutations in the heart tissue. GE and E2 supplementation alone resulted in nonsignificant increases in MF. The DMBA-induced lacI MF in the heart was sevenfold higher than the control (119.8 +/- 18.7 x 10(-6) vs. 17.4 +/- 3.2 x 10(-6); P < 0.001). GE in the diet had no significant effect on DMBA mutagenicity, while feeding E2 to DMBA-treated rats caused a significant reduction in the MF (119.8+/- 18.7 x 10(-6) vs. 61.4 +/- 13.5 x 10(-6); P < 0.017). DNA sequence analysis revealed that the majority of DMBA-induced mutations in rats fed control diet were A:T-->T:A (42%) and G:C-->T:A (19%) transversions, followed by G:C-->A:T (13%) and A:T-->G:C (8%) transitions. Feeding E2 altered the DMBA-induced mutational spectra by decreasing A:T-->T:A (23%) and G:C-->T:A (13%) transversions and increasing G:C-->A:T (24%) and A:T-->G:C (21%) transitions. Taken together, the results suggest that DMBA can induce gene mutations in heart tissue of OVX rats, and while dietary GE had little or no effect on DMBA-induced mutation, dietary E2 reduced the mutagenicity of DMBA.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene/toxicity , Estradiol/pharmacology , Genistein/pharmacology , Mutagens/toxicity , Animals , Animals, Genetically Modified , Female , Lac Operon , Mutagenicity Tests , Ovariectomy , Rats
20.
Mutat Res ; 527(1-2): 57-66, 2003 Jun 19.
Article in English | MEDLINE | ID: mdl-12787914

ABSTRACT

Caloric restriction (CR) reduces tumor incidence and retards aging in laboratory animals, including non-human primates. Because of the relationships among mutation, disease susceptibility, and aging, we investigated whether or not CR affects the accumulation of somatic cell mutations in aging animals. Starting at approximately 2 months of age, male CD rats (Harlan Sprague-Dawley-derived) were placed on different levels of dietary intake: ad libitum (AL) feeding, and 90% (10% CR), 75% (25% CR) and 60% (40% CR) of the total calories consumed by AL animals. At 3, 6, 12, and 24 months after the beginning of CR, Hprt mutant frequencies (MFs) were determined. The MFs measured in spleen lymphocytes from AL and CR rats sacrificed at 3 months of dietary restriction were similar for all dietary groups. However, the MFs at 6, 12, and 24 months of CR were significantly higher in AL-fed rats compared with animals on 40% CR: (4.5+/-0.4)x10(-6) versus (3.3+/-0.3)x10(-6) (P=0.032) in 6 months CR rats; (10.3+/-2.3)x10(-6) versus (7.3+/-1.2)x10(-6) in 12 months CR rats (P=0.04), and (18.3+/-3.2)x10(-6) versus (7.8+/-1.0)x10(-6) (P=0.001) in 24 months CR rats. In addition, rats receiving 25% CR for 24 months had a MF, (10.7+/-2.0)x10(-6), between the 40% CR and AL rats. Multiplex PCR of the Hprt gene in mutant clones from 12 and 24 months 40% CR rats and the corresponding AL rats detected deletions in 42% of CR mutants and 19% of AL mutants. Because of the difference in Hprt MF in the two groups, the estimated MF associated with deletions in CR rats was similar to the deletion MF in AL rats. This observation implies that the lower MF in CR rats is due to a reduction in smaller Hprt mutations (i.e. base substitutions and frameshifts). The pattern of smaller Hprt mutations from AL rats suggests that many were produced by reactive oxygen species (ROS). The results indicate that CR reduces the accumulation of spontaneous somatic cell mutation in aging rats, especially those caused by base substitutions and frameshifts.


Subject(s)
Aging/metabolism , Energy Intake , Hypoxanthine Phosphoribosyltransferase/genetics , Lymphocytes/enzymology , Mutation , Animals , Base Sequence , Cells, Cultured , Food Deprivation , Frameshift Mutation , Hypoxanthine Phosphoribosyltransferase/metabolism , Male , Mutagenicity Tests , Rats , Rats, Inbred Strains , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...