Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Diet Suppl ; 19(4): 499-514, 2022.
Article in English | MEDLINE | ID: mdl-33759678

ABSTRACT

Six months of supplementation with a multi-ingredient nutrition supplement was investigated in older adults with low skeletal muscle mass given the recently purported benefits of such approaches. Community-dwelling older adults (age, 74.9 ± 3.6 y; M/F, 18/19) participated in a double-blind, placebo-controlled, randomized trial involving daily consumption of either fruit juice placebo (PLA) or supplement (SUPP) in the form of a 200-mL carton of a juice-based emulsion of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) (3000 mg as 1500 mg docosahexaenoic acid and 1500 mg eicosapentaenoic acid), whey protein isolate (8 g), vitamin D3 (400 IU), and resveratrol (150 mg). Body composition, physical function, and circulating markers of metabolic health were assessed at baseline (PRE), and after 3 (MID) and 6 (POST) months of supplementation. Lean body mass (LBM) was unchanged in either group, but fat mass increased in SUPP by 1.41 (0.75, 2.07) kg at POST (+6.4%; p < .001; d = 0.20). Hand-grip strength was maintained in SUPP, but declined in PLA by 2.50 (0.81, 4.19) kg at POST (-6.8%; p = .002; d = 0.38). Short physical performance battery score was unchanged in PLA, but increased in SUPP by 1.13 (0.41, 1.84) above PRE at POST (p = .001; d = 0.47). Circulating markers of metabolic health were unchanged in response to the intervention in either PLA or SUPP. Long-term supplementation with an LC n-3 PUFA-rich multi-ingredient nutrition supplement demonstrates potential efficacy for improving physical function in older adults in the absence of exercise training and independent of a change in LBM.


Subject(s)
Fatty Acids, Omega-3 , Muscle Strength , Aged , Body Composition , Dietary Supplements , Double-Blind Method , Fatty Acids/pharmacology , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology , Female , Humans , Male , Muscle, Skeletal/physiology , Polyesters/metabolism , Polyesters/pharmacology
2.
Trials ; 22(1): 128, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33568208

ABSTRACT

BACKGROUND: Black men are disproportionately affected by prostate cancer, the most common non-cutaneous malignancy among men in the USA. The United States Preventive Services Task Force (USPSTF) encourages prostate-specific antigen (PSA) testing decisions to be based on shared decision-making (SDM) clinician professional judgment, and patient preferences. However, evidence suggests that SDM is underutilized in clinical practice, especially among the most vulnerable patients. The purpose of this study is to evaluate the efficacy of a community health worker (CHW)-led decision-coaching program to facilitate SDM for prostate cancer screening among Black men in the primary care setting, with the ultimate aim of improving/optimizing decision quality. METHODS: We proposed a CHW-led decision-coaching program to facilitate SDM for prostate cancer screening discussions in Black men at a primary care FQHC. This study enrolled Black men who were patients at the participating clinical site and up to 15 providers who cared for them. We estimated to recruit 228 participants, ages 40-69 to be randomized to either (1) a decision aid along with decision coaching on PSA screening from a CHW or (2) receiving a decision aid along with CHW-led interaction on modifying dietary and lifestyle to serve as an attention control. The independent randomization process was implemented within each provider and we controlled for age by dividing patients into two strata: 40-54 years and 55-69 years. This sample size sufficiently powered the detection differences in the primary study outcomes: knowledge, indicative of decision quality, and differences in PSA screening rates. Primary outcome measures for patients will be decision quality and decision regarding whether to undergo PSA screening. Primary outcome measures for providers will be acceptability and feasibility of the intervention. We will examine how decision coaching about prostate cancer screening impact patient-provider communication. These outcomes will be analyzed quantitatively through objective, validated scales and qualitatively through semi-structured, in-depth interviews, and thematic analysis of clinical encounters. Through a conceptual model combining elements of the Preventative Health Care Model (PHM) and Informed Decision-Making Model, we hypothesize that the prostate cancer screening decision coaching intervention will result in a preference-congruent decision and decisional satisfaction. We also hypothesize that this intervention will improve physician satisfaction with counseling patients about prostate cancer screening. DISCUSSION: Decision coaching is an evidence-based approach to improve decision quality in many clinical contexts, but its efficacy is incompletely explored for PSA screening among Black men in primary care. Our proposal to evaluate a CHW-led decision-coaching program for PSA screening has high potential for scalability and public health impact. Our results will determine the efficacy, cost-effectiveness, and sustainability of a CHW intervention in a community clinic setting in order to inform subsequent widespread dissemination, a critical research area highlighted by USPSTF. TRIAL REGISTRATION: The trial was registered prospectively with the National Institute of Health registry ( www.clinicaltrials.gov ), registration number NCT03726320 , on October 31, 2018.


Subject(s)
Mentoring , Prostatic Neoplasms , Adult , Black or African American , Aged , Community Health Workers , Decision Making , Early Detection of Cancer , Humans , Male , Middle Aged , Prostate-Specific Antigen , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/therapy , United States
3.
Mol Nutr Food Res ; 65(1): e2000202, 2021 01.
Article in English | MEDLINE | ID: mdl-32558187

ABSTRACT

SCOPE: IL-1RI-mediated inflammatory signaling alters metabolic tissue responses to dietary challenges (e.g., high-fat diet [HFD]). Recent work suggests that metabolic phenotype is transferrable between mice in a shared living environment (i.e., co-housing) due to gut microbiome exchange. The authors examine whether the metabolic phenotype of IL-1RI-/- mice fed HFD or low-fat diet (LFD) could be transferred to wild-type (WT) mice through gut microbiome exchange facilitated by co-housing. METHODS AND RESULTS: Male WT (C57BL/J6) and IL-1RI-/- mice are fed HFD (45% kcal) or LFD (10% kcal) for 24 weeks and housed i) by genotype (single-housed) or ii) with members of the other genotype in a shared microbial environment (co-housed). The IL-1RI-/-  gut microbiome is dominant to WT, meaning that co-housed WT mice adopted the IL-1RI-/- microbiota profile. This is concomitant with greater body weight, hepatic lipid accumulation, adipocyte hypertrophy, and hyperinsulinemia in co-housed WT mice, compared to single-housed counterparts. These effects are most evident following HFD. Primary features of microbiome differences are Lachnospiraceae and Ruminococcaceae (known producers of SCFA). CONCLUSION: Transfer of SCFA-producing microbiota from IL-1RI-/- mice highlights a new connection between diet, inflammatory signaling, and the gut microbiome, an association that is dependent on the nature of the dietary fat challenge.


Subject(s)
Adipose Tissue/metabolism , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Liver/physiology , Receptors, Interleukin-1 Type I/genetics , 3T3-L1 Cells , Animals , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/genetics , Hep G2 Cells , Humans , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Receptors, Interleukin-1 Type I/metabolism , Signal Transduction
4.
FASEB J ; 33(10): 11006-11020, 2019 10.
Article in English | MEDLINE | ID: mdl-31284764

ABSTRACT

Monocytes/macrophages drive progression and regression of atherosclerosis. Conjugated linoleic acid (CLA), an anti-inflammatory lipid, mediates atheroprotective effects. We investigated how CLA alters monocyte/macrophage phenotype during attenuated progression and regression of atherosclerosis. Apolipoprotein E knockout (ApoE-/-) mice were fed a high-fat (60%) high-cholesterol (1%) diet (HFHCD) for 2 wk, followed by 6-wk 1% CLA 80:20 supplementation to investigate disease progression. Simultaneously, ApoE-/- mice were fed a 12-wk HFHCD with/without CLA for the final 4 wk to investigate regression. Aortic lesions were quantified by en face staining. Proteomic analysis, real-time quantitative PCR and flow cytometry were used to interrogate monocyte/macrophage phenotypes. CLA supplementation inhibited atherosclerosis progression coincident with decreased proinflammatory and increased anti-inflammatory macrophages. However, CLA-induced regression was associated with increased proinflammatory monocytes resulting in increased proresolving M2 bone marrow-derived macrophages, splenic macrophages, and dendritic cells in lesion-draining lymph nodes. Proteomic analysis confirmed regulation of a proinflammatory bone marrow response, which was abolished upon macrophage differentiation. Thus, in attenuation and regression of atherosclerosis, regardless of the monocyte signature, during monocyte to macrophage differentiation, proresolving macrophages prevail, mediating vascular repair. This study provides novel mechanistic insight into the monocyte/macrophage phenotypes in halted atherosclerosis progression and regression of atherosclerosis.-Bruen, R., Curley, S., Kajani, S., Lynch, G., O'Reilly, M. E., Dillon, E. T., Fitzsimons, S., Mthunzi, L., McGillicuddy, F. C., Belton, O. Different monocyte phenotypes result in proresolving macrophages in conjugated linoleic acid-induced attenuated progression and regression of atherosclerosis.


Subject(s)
Atherosclerosis/drug therapy , Cell Differentiation , Linoleic Acids, Conjugated/pharmacology , Phenotype , Animals , Aorta/drug effects , Aorta/metabolism , Apolipoproteins E/genetics , Atherosclerosis/etiology , Atherosclerosis/metabolism , Cells, Cultured , Diet, High-Fat/adverse effects , Linoleic Acids, Conjugated/therapeutic use , Male , Mice , Mice, Inbred C57BL , Monocyte-Macrophage Precursor Cells/cytology , Monocyte-Macrophage Precursor Cells/drug effects , Monocyte-Macrophage Precursor Cells/metabolism , Proteome/genetics , Proteome/metabolism
5.
J Pharmacol Exp Ther ; 370(3): 447-458, 2019 09.
Article in English | MEDLINE | ID: mdl-31270216

ABSTRACT

We have shown that the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide (Lir) inhibits development of early atherosclerosis in vivo by modulating immune cell function. We hypothesized that Lir could attenuate pre-established disease by modulating monocyte or macrophage phenotype to induce atheroprotective responses. Human atherosclerotic plaques obtained postendarterectomy and human peripheral blood macrophages were treated ex vivo with Lir. In parallel, apolipoprotein E-deficient (ApoE-/-) mice received a high-fat, high-cholesterol diet to induce atherosclerosis for 8 weeks, after which ApoE-/- mice received 300 µg/kg of Lir daily or vehicle control for a further 4 weeks to investigate the attenuation of atherosclerosis. Lir inhibited proinflammatory monocyte chemoattractant protein-1 secretion from human endarterectomy samples and monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin (IL)-1ß secretion from human macrophages after ex vivo treatment. An increase in CD206 mRNA and IL-10 secretion was also detected, which implies resolution of inflammation. Importantly, Lir significantly attenuated pre-established atherosclerosis in ApoE-/- mice in the whole aorta and aortic root. Proteomic analysis of ApoE-/- bone marrow cells showed that Lir upregulated the proinflammatory cathepsin protein family, which was abolished in differentiated macrophages. In addition, flow cytometry analysis of bone marrow cells induced a shift toward reduced proinflammatory and increased anti-inflammatory macrophages. We concluded that Lir attenuates pre-established atherosclerosis in vivo by altering proinflammatory mediators. This is the first study to describe a mechanism through which Lir attenuates atherosclerosis by increasing bone marrow proinflammatory protein expression, which is lost in differentiated bone marrow-derived macrophages. This study contributes to our understanding of the anti-inflammatory and cardioprotective role of GLP-1RAs. SIGNIFICANCE STATEMENT: It is critical to understand the mechanisms through which liraglutide (Lir) mediates a cardioprotective effect as many type 2 diabetic medications increase the risk of myocardial infarction and stroke. We have identified that Lir reduces proinflammatory immune cell populations and mediators from plaque-burdened murine aortas in vivo and augments proresolving bone marrow-derived macrophages in attenuation of atherosclerotic disease, which provides further insight into the atheroprotective effect of Lir.


Subject(s)
Apolipoproteins E/deficiency , Inflammation Mediators/metabolism , Liraglutide/pharmacology , Phenotype , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/metabolism , Animals , Chemokines/metabolism , Disease Progression , Female , Humans , Liraglutide/therapeutic use , Male , Mice , Plaque, Atherosclerotic/drug therapy
6.
Obesity (Silver Spring) ; 25(8): 1410-1420, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28650582

ABSTRACT

OBJECTIVE: The purpose of the study was to explore the impact of dual targeting of C-C motif chemokine receptor-2 (CCR2) and fractalkine receptor (CX3CR1) on the metabolic and inflammatory consequences of obesity induced by a high-fat diet (HFD). METHODS: C57BL/6J wild-type, Cx3cr1-/- , Ccr2-/- , and Cx3cr1-/- Ccr2-/- double-knockout male and female mice were fed a 45% HFD for up to 25 weeks starting at 12 weeks of age. RESULTS: All groups gained weight at a similar rate and developed a similar degree of adiposity, hyperglycemia, glucose intolerance, and impairment of insulin sensitivity in response to HFD. As expected, the circulating monocyte count was decreased in Ccr2-/- and Cx3cr1-/- Ccr2-/- mice but not in Cx3cr1-/- mice. Flow cytometric analysis of perigonadal adipose tissue of male, but not female, mice revealed trends to lower CD11c+MGL1- M1-like macrophages and higher CD11c-MGL1+ M2-like macrophages as a percentage of CD45+F4/80+CD11b+ macrophages in Cx3cr1-/- Ccr2-/- mice versus wild-type mice, suggesting reduced adipose tissue macrophage activation. In contrast, single knockout of Ccr2 or Cx3cr1 did not differ in their adipose macrophage phenotypes. CONCLUSIONS: Although CCR2 and CX3CR1 may synergistically impact inflammatory phenotypes, their joint deficiency did not influence the metabolic effects of a 45% HFD-induced obesity in these model conditions.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Diet, High-Fat/adverse effects , Receptors, CCR2/metabolism , Weight Gain , Animals , Body Composition , CX3C Chemokine Receptor 1/genetics , Female , Glucose Intolerance/etiology , Glucose Intolerance/genetics , Inflammation , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/genetics , Receptors, CCR2/genetics
7.
PLoS One ; 10(9): e0138317, 2015.
Article in English | MEDLINE | ID: mdl-26393344

ABSTRACT

The fractalkine (CX3CL1-CX3CR1) chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3ß proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.


Subject(s)
Diet, High-Fat , Receptors, Chemokine/genetics , Adipokines/metabolism , Adipose Tissue/cytology , Animals , CX3C Chemokine Receptor 1 , Chemokine CCL2/blood , Chemokine CX3CL1/blood , Diabetes Mellitus, Type 2/etiology , Energy Metabolism , Glucose Intolerance , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Insulin/metabolism , Insulin Resistance , Interleukin-6/blood , Liver/metabolism , Macrophages/cytology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Chemokine/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...