Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6664): eadi3448, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37590370

ABSTRACT

CDC45-MCM2-7-GINS (CMG) helicase assembly is the central event in eukaryotic replication initiation. In yeast, a multi-subunit "pre-loading complex" (pre-LC) accompanies GINS to chromatin-bound MCM2-7, leading to CMG formation. Here, we report that DONSON, a metazoan protein mutated in microcephalic primordial dwarfism, is required for CMG assembly in vertebrates. Using AlphaFold to screen for protein-protein interactions followed by experimental validation, we show that DONSON scaffolds a vertebrate pre-LC containing GINS, TOPBP1, and DNA pol ε. Our evidence suggests that DONSON docks the pre-LC onto MCM2-7, delivering GINS to its binding site in CMG. A patient-derived DONSON mutation compromises CMG assembly and recapitulates microcephalic dwarfism in mice. These results unify our understanding of eukaryotic replication initiation, implicate defective CMG assembly in microcephalic dwarfism, and illustrate how in silico protein-protein interaction screening accelerates mechanistic discovery.


Subject(s)
Cell Cycle Proteins , DNA Replication , DNA-Binding Proteins , Minichromosome Maintenance Proteins , Nuclear Proteins , Animals , Humans , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins , Protein Interaction Mapping/methods , Computer Simulation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Dwarfism/genetics , Microcephaly/genetics , Xenopus laevis
2.
Science ; 368(6488)2020 04 17.
Article in English | MEDLINE | ID: mdl-32299917

ABSTRACT

The chromosome breakage-fusion-bridge (BFB) cycle is a mutational process that produces gene amplification and genome instability. Signatures of BFB cycles can be observed in cancer genomes alongside chromothripsis, another catastrophic mutational phenomenon. We explain this association by elucidating a mutational cascade that is triggered by a single cell division error-chromosome bridge formation-that rapidly increases genomic complexity. We show that actomyosin forces are required for initial bridge breakage. Chromothripsis accumulates, beginning with aberrant interphase replication of bridge DNA. A subsequent burst of DNA replication in the next mitosis generates extensive DNA damage. During this second cell division, broken bridge chromosomes frequently missegregate and form micronuclei, promoting additional chromothripsis. We propose that iterations of this mutational cascade generate the continuing evolution and subclonal heterogeneity characteristic of many human cancers.


Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Chromosome Breakage , DNA Damage/genetics , Mitosis/genetics , Neoplasms/genetics , Neoplasms/pathology , Actomyosin/metabolism , Cell Line, Tumor , Exodeoxyribonucleases/genetics , Gene Dosage , Genome, Human , Humans , Mechanical Phenomena , Mutagenesis , Mutation , Phosphoproteins/genetics , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...