Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(23)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904943

ABSTRACT

We investigated the spectrum of density fluctuations of a liquid crystal, CB7CB, in two different orientations by using high-resolution inelastic x-ray scattering. Our analysis, based on Bayesian principles, revealed that high-frequency collective excitations propagate through this mesoscale-ordered sample in a peculiar manner that lies somewhere between those observed in liquids and crystalline systems. Interestingly, when we probed longer length scales, a more pronounced solid-like response emerged. This was mainly characterized by anomalously sharp inelastic excitations and the onset of shear mode propagation. Comparison with previous x-ray diffraction results suggests a correlation between the observed behavior and the mesogen arrangement.

2.
J Chem Phys ; 159(24)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38131485

ABSTRACT

We used inelastic x-ray scattering methods to measure the terahertz spectrum of density fluctuations of ethanol in both liquid and solid phases. The results of a Bayesian inference-based lineshape analysis with a multiple excitation model and the comparison with a previous similar analysis on water indicate that the different structures induced by hydrogen bonds in ethanol and water have a profound influence on the respective dynamic responses, the latter being characterized by longer living and better resolved high-frequency acoustic excitations. In addition, we compare these findings with those obtained with an alternative approach based on the exponential expansion theory and ensuring sum rules fulfillment, demonstrating that the model's choice directly impacts the number of spectral modes detected.

3.
J Chem Phys ; 158(13): 134509, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37031110

ABSTRACT

Understanding how molecules engage in collective motions in a liquid where a network of bonds exists has both fundamental and applied relevance. On the one hand, it can elucidate the "ordering" role of long-range correlations and inspire new avenues to control such order to implement sound manipulation. Water represents an ideal investigation case to unfold these general aspects, and, across the decades, it has been the focus of thorough scrutiny. Despite this investigative effort, the spectrum of terahertz density fluctuations of water largely remains a puzzle for condensed matter physicists. To unravel it, we compare previous scattering measurements of water spectra with new ones on ice. Owing to the unique asset of Bayesian inference, we draw a more detailed portrayal of the phonon response of ice. The comparison with the one of liquid water challenges the current understanding of density fluctuations in water, or more in general, of any networked liquid.

SELECTION OF CITATIONS
SEARCH DETAIL
...