Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365234

ABSTRACT

Siderophores have long been implicated in sociomicrobiology as determinants of bacterial interrelations. For plant-associated genera, like Bacillus and Pseudomonas, siderophores are well known for their biocontrol functions. Here, we explored the functional role of the Bacillus subtilis siderophore bacillibactin (BB) in an antagonistic interaction with Pseudomonas marginalis. The presence of BB strongly influenced the outcome of the interaction in an iron-dependent manner. The BB producer B. subtilis restricts colony spreading of P. marginalis by repressing the transcription of histidine kinase-encoding gene gacS, thereby abolishing production of secondary metabolites such as pyoverdine and viscosin. By contrast, lack of BB restricted B. subtilis colony growth. To explore the specificity of the antagonism, we cocultured B. subtilis with a collection of fluorescent Pseudomonas spp. and found that the Bacillus-Pseudomonas interaction is conserved, expanding our understanding of the interplay between two of the most well-studied genera of soil bacteria.


Subject(s)
Bacillus subtilis , Iron , Iron/metabolism , Bacillus subtilis/genetics , Siderophores/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism
2.
Trends Microbiol ; 31(8): 845-857, 2023 08.
Article in English | MEDLINE | ID: mdl-36878770

ABSTRACT

Bacillus and Pseudomonas ubiquitously occur in natural environments and are two of the most intensively studied bacterial genera in the soil. They are often coisolated from environmental samples, and as a result, several studies have experimentally cocultured bacilli and pseudomonads to obtain emergent properties. Even so, the general interaction between members of these genera is virtually unknown. In the past decade, data on interspecies interactions between natural isolates of Bacillus and Pseudomonas has become more detailed, and now, molecular studies permit mapping of the mechanisms behind their pairwise ecology. This review addresses the current knowledge about microbe-microbe interactions between strains of Bacillus and Pseudomonas and discusses how we can attempt to generalize the interaction on a taxonomic and molecular level.


Subject(s)
Bacillus , Pseudomonas , Pseudomonas/genetics , Bacillus/genetics , Soil , Soil Microbiology , Bacteria
3.
Curr Biol ; 32(14): R771-R774, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35882195

ABSTRACT

Many bacterial species are capable of differentiating to create phenotypic heterogeneity. Using the aggregate-forming marine bacterium Vibrio splendidus, a new study reveals how this organism differentiates to form spherical structures with a motile, carbon-storing core and a non-motile shell.

4.
Front Cell Infect Microbiol ; 11: 562525, 2021.
Article in English | MEDLINE | ID: mdl-34368008

ABSTRACT

Urinary tract infections (UTIs) are frequent in humans, affecting the upper and lower urinary tract. Present diagnosis relies on the positive culture of uropathogenic bacteria from urine and clinical markers of inflammation of the urinary tract. The bladder is constantly challenged by adverse environmental stimuli which influence urinary tract physiology, contributing to a dysbiotic environment. Simultaneously, pathogens are primed by environmental stressors such as antibiotics, favoring recurrent UTIs (rUTIs), resulting in chronic illness. Due to different confounders for UTI onset, a greater understanding of the fundamental environmental mechanisms and microbial ecology of the human urinary tract is required. Such advancements could promote the tandem translation of bench and computational studies for precision treatments and clinical management of UTIs. Therefore, there is an urgent need to understand the ecological interactions of the human urogenital microbial communities which precede rUTIs. This review aims to outline the mechanistic aspects of rUTI ecology underlying dysbiosis between both the human microbiome and host physiology which predisposes humans to rUTIs. By assessing the applications of next generation and systems level methods, we also recommend novel approaches to elucidate the systemic consequences of rUTIs which requires an integrated approach for successful treatment. To this end, we will provide an outlook towards the so-called 'uncomplicated environment of UTIs', a holistic and systems view that applies ecological principles to define patient-specific UTIs. This perspective illustrates the need to withdraw from traditional reductionist perspectives in infection biology and instead, a move towards a systems-view revolving around patient-specific pathophysiology during UTIs.


Subject(s)
Urinary Tract Infections , Anti-Bacterial Agents/therapeutic use , Humans , Inflammation/drug therapy , Urinary Bladder
5.
J Med Microbiol ; 69(2): 162-175, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31935190

ABSTRACT

The advent of next-generation sequencing technology has revolutionized the field of prokaryotic genetics and genomics by allowing interrogation of entire genomes, transcriptomes and global transcription factor binding profiles. As more studies employing these techniques have been performed, the state of the art regarding prokaryotic gene regulation has developed from the level of individual genes to genetic regulatory networks and systems biology. When applied to bacterial pathogens, particularly valuable insights have been gained into the regulation of virulence-associated genes, their relative importance to bacterial survival in planktonic, biofilm or host infection scenarios, antimicrobial resistance and the molecular details of host-pathogen interactions. This review outlines some of the latest developments and applications of next-generation sequencing techniques that have used primarily Pseudomonas aeruginosa as a model system. We focus particularly on insights into Pseudomonas virulence and infection that have been gained from these approaches and the future directions in which this field could develop.


Subject(s)
Bacterial Proteins/genetics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Transcriptome , Animals , Bacterial Proteins/metabolism , Biofilms , Gene Expression Regulation, Bacterial , Genomics , High-Throughput Nucleotide Sequencing , Humans , Pseudomonas aeruginosa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...