Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 175: 156-170, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33548309

ABSTRACT

The nuclear-cytoplasmic transport of biomolecules is assisted by the nuclear pores composed of evolutionarily conserved proteins termed nucleoporins (Nups). The central Nups, characterized by multiple FG-repeats, are highly dynamic and contain a high level of intrinsically disordered regions (IDPRs). FG-Nups bind several protein partners and play critical roles in molecular interactions and the regulation of cellular functions through their IDPRs. In the present study, we performed a multiparametric bioinformatics analysis to characterize the prevalence and functionality of IDPRs in human FG-Nups. These analyses revealed that the sequence of all FG-Nups contained >50% IDPRs (except Nup54 and Nup358). Nup98, Nup153, and POM121 were extremely disordered with ~80% IDPRs. The functional disorder-based binding regions in the FG-Nups were identified. The phase separation behavior of FG-Nups indicated that all FG-Nups have the potential to undergo liquid-to-liquid phase separation that could stabilize their liquid state. The inherent structural flexibility in FG-Nups is mechanistically and functionally advantageous. Since certain FG-Nups interact with disease-relevant protein aggregates, their complexes can be exploited for drug design. Furthermore, consideration of the FG-Nups from the intrinsic disorder perspective provides critical information that can guide future experimental studies to uncover novel pathways associated with diseases linked with protein misfolding and aggregation.


Subject(s)
Intrinsically Disordered Proteins/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Computational Biology/methods , Cytoplasm/metabolism , Databases, Genetic , Glycine/chemistry , Humans , Intrinsically Disordered Proteins/chemistry , Models, Molecular , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/physiology , Phenylalanine/chemistry , Protein Binding , Protein Folding , Protein Interaction Maps
2.
ACS Omega ; 5(19): 11084-11091, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32455229

ABSTRACT

Fascioliasis, a neglected foodborne disease caused by liver flukes (genus Fasciola), affects more than 200 million people worldwide. Despite technological advances, little is known about the molecular biology and biochemistry of these flukes. We present the draft genome of Fasciola gigantica for the first time. The assembled draft genome has a size of ∼1.04 Gb with an N50 and N90 of 129 and 149 kb, respectively. A total of 20 858 genes were predicted. The de novo repeats identified in the draft genome were 46.85%. The pathway included all of the genes of glycolysis, Krebs cycle, and fatty acid metabolism but lacked the key genes of the fatty acid biosynthesis pathway. This indicates that the fatty acid required for survival of the fluke may be acquired from the host bile. It may be hypothesized that the relatively larger F. gigantica genome did not evolve through genome duplications but rather is interspersed with many repetitive elements. The genomic information will provide a comprehensive resource to facilitate the development of novel interventions for fascioliasis control.

3.
Int J Biol Macromol ; 138: 224-233, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31279880

ABSTRACT

Fascioliasis, a serious helminth disease of the livestock population, results from infection with the parasite Fasciola. Despite the alarming increase in drug resistance, a safe and fully effective vaccine for fascioliasis is still not available. In the present study, we employed high-throughput immunoinformatics approaches to design a multi-epitope based subunit vaccine using seven important F. gigantica proteins (cathepsin B, cathepsin L, leucyl aminopeptidase, thioredoxin glutathione reductase, fatty acid binding protein-1, saposin-like protein-2, and 14-3-3 protein epsilon). The CTL, HTL, and B-cell epitopes were selected for designing the vaccine on the basis of their immunogenic behavior and binding affinity. The engineered vaccine showed potential immunogenic efficacy by elaborating the IFN-γ and humoral response. The modeled structure of the vaccine was docked with the toll-like receptor-2 immune receptor, and the molecular dynamics simulation was performed to understand the stability, interaction, and dynamics of the complex. Finally, in silico cloning of the resulting vaccine was performed to create the plasmid construct of vaccine for expression in an appropriate biological system. Experimental evaluation of the designed vaccine construct in an animal model may result in a novel and immunogenic vaccine that may confer protection against F. gigantica infection.


Subject(s)
Computational Biology , Epitopes/immunology , Fasciola/immunology , Vaccines, Subunit/immunology , Amino Acid Sequence , Animals , Helminth Proteins/chemistry , Helminth Proteins/immunology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Structure, Tertiary , Thermodynamics , Vaccines, Subunit/chemistry
4.
AIDS Res Hum Retroviruses ; 35(5): 477-487, 2019 05.
Article in English | MEDLINE | ID: mdl-30618266

ABSTRACT

Human T lymphotropic virus type 1 (HTLV-1) causes adult T cell leukemia and lymphoma and other neuroinflammatory diseases. The pX region of HTLV-1 genome encodes an accessory protein p30 that is required for viral persistence and spread in the host. p30 regulates viral gene expression at the transcription level by competing with Tax for p300 binding and at posttranscriptional level by nuclear retention of tax/rex messenger RNA (mRNA). In addition, p30 modulates the host cellular environment by binding to various host proteins such as ATM, REGγ, and PRMT5. However, the low expression levels of p30 has been a major hurdle in studying its structure-function relationship in the context of HTLV-1 pathobiology, which is most likely due to its intrinsically disordered nature. To investigate the unstable nature of p30, flow cytometric analysis of p30-GFP fusion protein expressed in Escherichia coli was conducted and bioinformatics analysis of p30 was performed. The bacterial cells were green fluorescent protein (GFP) positive, indicating that p30-GFP was in the soluble fraction. Induction, particularly at higher temperature, reduced the expression of p30-GFP. Moreover, p30-GFP was detected exclusively in insoluble fraction upon cell lysis, suggesting its unstable and disordered nature. The bioinformatics analysis of p30 protein sequence and amino acid content revealed that p30 has highly disordered regions from amino acids 75-155 and 197-241. Furthermore, p30 has regions for macromolecular interactions that could stabilize it and these regions coincide with the unstable regions. Collectively, the study indicates that HTLV-1 p30 is an intrinsically disordered protein.


Subject(s)
Computational Biology , HTLV-I Infections/virology , Intrinsically Disordered Proteins/genetics , Retroviridae Proteins/genetics , Viral Core Proteins/genetics , Escherichia coli/genetics , Gene Expression Regulation, Viral , Green Fluorescent Proteins , Human T-lymphotropic virus 1 , Humans , Viral Fusion Proteins/genetics
5.
Int J Biol Macromol ; 119: 785-791, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30076928

ABSTRACT

Accurate chromosomal segregation is crucial for the maintenance of genomic integrity. Rna14 is a major component of the yeast pre-mRNA 3'-end processing factor, the cleavage factor IA complex, and is involved in cleavage and polyadenylation of mRNA in the nucleus. Rna14 is also essential for the maintenance of genomic integrity in fission yeast Schizosaccharomyces pombe. In the present study, we report that a non-homologous mutation, A394E that is present in the central intrinsic disordered region of Rna14 leads to chromosomal instability in fission yeast. This mutation was shown to disrupt chromosome segregation and 3'-end maturation, and also affects the pre-mRNA splicing in vivo at non-permissive temperatures. We observed that a significant part of Rna14 is intrinsically disordered, that includes the N- and C-terminal of Rna14, as well as the central region containing the HAT repeats and the mutation within amino acid residues 372-435. These regions are crucial for the function of Rna14 as they are involved in the interaction of Rna14 with other proteins.


Subject(s)
Amino Acid Substitution , Chromosomal Instability , Intrinsically Disordered Proteins/genetics , Point Mutation , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , Alleles , Chromosome Aberrations , Genotype , RNA Splicing , Transcription Termination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...