Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 40(2): 56, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165520

ABSTRACT

Chlorophenols are persistent environmental pollutants used in synthesizing dyes, drugs, pesticides, and other industrial products. The chlorophenols released from these processes seriously threaten the environment and human health. The present study describes 4-chlorophenol (4-CP) degradation activity and metagenome structure of a bacterial consortium enriched in a 4-CP-containing medium. The consortium utilized 4-CP as a single carbon source at a wide pH range, temperature, and in the presence of heavy metals. The immobilized consortium retained its degradation capacity for an extended period. The 4-aminoantipyrine colorimetric analysis revealed complete mineralization of 4-CP up to 200 mg/L concentration and followed the zero-order kinetics. The addition of glycerol and yeast extract enhanced the degradation efficiency. The consortium showed both ortho- and meta-cleavage activity of catechol dioxygenase. Whole genome sequence (WGS) analysis revealed the microbial compositions and functional genes related to xenobiotic degradation pathways. The identified genes were mapped on the KEGG database to construct the 4-CP degradation pathway. The results exhibited the high potential of the consortium for bioremediation of 4-CP contaminated sites. To our knowledge, this is the first report on WGS analysis of a 4-CP degrading bacterial consortium.


Subject(s)
Chlorophenols , Metagenome , Humans , Metals , Carbon
2.
Curr Microbiol ; 81(1): 22, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017305

ABSTRACT

Microbial community exhibit shift in composition in response to temperature variation. We report crude oil-degrading activity and high-throughput 16S rRNA gene sequencing (metagenome) profiles of four bacterial consortia enriched at three different temperatures in crude oil-amended Bushnell-Hass Medium from an oily sludge sediment. The consortia were referred to as O (4 ± 2 â„ƒ in 3% w/v crude oil), A (25 ± 2 â„ƒ in 1% w/v crude oil), H (25 ± 2 â„ƒ in 3% w/v crude oil), and X (45 ± 2 â„ƒ in 3% w/v crude oil). The hydrocarbon-degrading activity was highest for consortium A and H and lowest for consortium O. The metagenome profile revealed the predominance of Proteobacteria (62.12-1.25%) in each consortium, followed by Bacteroidota (18.94-37.77%) in the consortium O, A, and H. Contrarily, consortium X comprised 7.38% Actinomycetota, which was essentially low (< 0.09%) in other consortia, and only 0.41% Bacteroidota. The PICRUSt-based functional analysis predicted major functions associated with the metabolism and 5060 common KEGG Orthology (KOs). A total of 296 KOs were predicted exclusively in consortium X. Additionally, 247 KOs were predicted from xenobiotic biodegradation pathways. This study found that temperature had a stronger influence on the composition and function of the bacterial community than crude oil concentration.


Subject(s)
Microbial Consortia , Petroleum , Temperature , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Microbial Consortia/genetics , Hydrocarbons/metabolism , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Petroleum/metabolism , Bacteroidetes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...