Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Elife ; 122023 11 06.
Article in English | MEDLINE | ID: mdl-37929938

ABSTRACT

Many bacteria encode multiple toxin-antitoxin (TA) systems targeting separate, but closely related, cellular functions. The toxin of the Escherichia coli hipBA system, HipA, is a kinase that inhibits translation via phosphorylation of glutamyl-tRNA synthetase. Enteropathogenic E. coli O127:H6 encodes the hipBA-like, tripartite TA system; hipBST, in which the HipT toxin specifically targets the tryptophanyl-tRNA synthetase, TrpS. Notably, in the tripartite system, the function as antitoxin has been taken over by the third protein, HipS, but the molecular details of how activity of HipT is inhibited remain poorly understood. Here, we show that HipBST is structurally different from E. coli HipBA and that the unique HipS protein, which is homologous to the N-terminal subdomain of HipA, inhibits the kinase through insertion of a conserved Trp residue into the active site. We also show how auto-phosphorylation at two conserved sites in the kinase toxin serve different roles and affect the ability of HipS to neutralize HipT. Finally, solution structural studies show how phosphorylation affects overall TA complex flexibility.


Subject(s)
Antitoxins , Escherichia coli Proteins , Toxin-Antitoxin Systems , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Toxin-Antitoxin Systems/genetics , Phosphorylation , Antitoxins/metabolism
2.
Soft Matter ; 17(33): 7769-7780, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34351343

ABSTRACT

The self-assembly in mixtures of the anionic bile salt surfactant sodium deoxycholate (NaDC) and the zwitterionic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in physiological saline solution has been investigated using light scattering, small-angle X-ray scattering and cryo-transmission electron microscopy. Rather small tri-axial ellipsoidal NaDC-DMPC mixed micelles form at a high content of bile salt in the mixture, which increase in size as an increasing amount of DMPC is incorporated into the micelles. Eventually, the micelles begin to grow substantially in length to form long wormlike micelles. At higher mole fractions of DMPC, the samples become turbid and cryo-TEM measurements reveal the existence of large perforated vesicles (stomatosomes), coexisting with geometrically open disks. To our knowledge, stomatosomes have not been observed before for any bile salt-phospholipid system. Mixed micelles are found to be the sole aggregate structure in a very wide regime of bile salt-phospholipid compositions, i.e. up to about 77 mol% phospholipid in the micelles. This is much higher than the corresponding value of 25 mol% observed for the conventional surfactant hexadecyltrimethylammonium bromide (CTAB) mixed with DMPC in the same solvent. The enhanced ability of bile salt surfactants to solubilize phospholipid bilayers and form mixed micelles is rationalized using bending elasticity theory. From our theoretical analysis, we are able to conclude that amphiphilic molecules rank in the following order of increasing spontaneous curvature: phospholipids < conventional surfactants < bile salts. The bending rigidity of the different amphiphilic molecules increases according to the following sequence: bile salts < conventional surfactants < phospholipids.


Subject(s)
Micelles , Phospholipids , Bile Acids and Salts , Deoxycholic Acid , Surface-Active Agents
3.
Mol Cell Proteomics ; 20: 100090, 2021.
Article in English | MEDLINE | ID: mdl-33964423

ABSTRACT

Human α2-macroglobulin (A2M) is the most characterized protease inhibitor in the alpha-macroglobulin (αM) superfamily, but the structure of its native conformation has not been determined. Here, we combined negative stain electron microscopy (EM), small-angle X-ray scattering (SAXS), and cross-linking-mass spectrometry (XL-MS) to investigate native A2M and its collapsed conformations that are obtained through aminolysis of its thiol ester by methylamine or cleavage of its bait region by trypsin. The combined interpretation of these data resulted in a model of the native A2M tetramer and its conformational changes. Native A2M consists of two crescent-shaped disulfide-bridged subunit dimers, which face toward each other and surround a central hollow space. In native A2M, interactions across the disulfide-bridged dimers are minimal, with a single major interface between the linker (LNK) regions of oppositely positioned subunits. Bait region cleavage induces both intrasubunit domain repositioning and an altered configuration of the disulfide-bridged dimer. These changes collapse the tetramer into a more compact conformation, which encloses an interior protease-trapping cavity. A recombinant A2M with a modified bait region was used to map the bait region's position in native A2M by XL-MS. A second recombinant A2M introduced an intersubunit disulfide into the LNK region, demonstrating the predicted interactions between these regions in native A2M. Altogether, our native A2M model provides a structural foundation for understanding A2M's protease-trapping mechanism, its conformation-dependent receptor interactions, and the dissociation of native A2M into dimers due to inflammatory oxidative stress.


Subject(s)
Peptide Hydrolases/chemistry , alpha-Macroglobulins/chemistry , HEK293 Cells , Humans , Mass Spectrometry/methods , Microscopy, Electron/methods , Mutation , Protein Conformation , Recombinant Proteins/chemistry , Scattering, Small Angle , alpha-Macroglobulins/genetics
4.
ACS Appl Mater Interfaces ; 13(7): 7825-7838, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33583172

ABSTRACT

Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients. An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells. However, low colloidal stability and limited enzyme entrapment efficiency could hinder the further pharmaceutical development and the clinical translation of these nanoformulations. Herein, the incorporation of the cationic miristalkonium chloride (MKC) surfactant to RGD nanovesicles is explored, comparing two different nanosystems-quatsomes and hybrid liposomes. In both systems, the positive surface charge introduced by MKC promotes electrostatic interactions between the enzyme and the nanovesicles, improving the loading capacity and colloidal stability. The presence of high MKC content in quatsomes practically abolishes GLA enzymatic activity, while low concentrations of the surfactant in hybrid liposomes stabilize the enzyme without compromising its activity. Moreover, hybrid liposomes show improved efficacy in cell cultures and a good in vitro/in vivo safety profile, ensuring their future preclinical and clinical development.


Subject(s)
Enzyme Replacement Therapy , Fabry Disease/therapy , Nanostructures/chemistry , alpha-Galactosidase/metabolism , Fabry Disease/enzymology , Humans , Oligopeptides/chemistry , Particle Size , Surface Properties , Surface-Active Agents/chemistry
5.
Nanomedicine ; 31: 102318, 2021 01.
Article in English | MEDLINE | ID: mdl-33091569

ABSTRACT

Atherosclerosis is the main killer in the west and therefore a major health challenge today. Total serum cholesterol and lipoprotein concentrations, used as clinical markers, fail to predict the majority of cases, especially between the risk scale extremes, due to the high complexity in lipoprotein structure and composition. In particular, low-density lipoprotein (LDL) plays a key role in atherosclerosis development, with LDL size being a parameter considered for determining the risk for cardiovascular diseases. Determining LDL size and structural parameters is challenging to address experimentally under physiological-like conditions. This article describes the biochemistry and ultrastructure of normolipidemic and hypertriglyceridemic LDL fractions and subfractions using small-angle X-ray scattering. Our results conclude that LDL particles of hypertriglyceridemic compared to healthy individuals 1) have lower LDL core melting temperature, 2) have lower cholesteryl ester ordering in their core, 3) are smaller, rounder and more spherical below melting temperature, and 4) their protein-containing shell is thinner above melting temperature.


Subject(s)
Cardiovascular Diseases/blood , Cardiovascular Diseases/metabolism , Hypertriglyceridemia/blood , Lipoproteins, LDL/chemistry , Cholesterol Esters/blood , Humans , Hypertriglyceridemia/metabolism , Lipoproteins, LDL/blood , Triglycerides/blood
6.
Acta Crystallogr D Struct Biol ; 76(Pt 5): 406-417, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32355037

ABSTRACT

Leucocyte common antigen-related protein (LAR) is a post-synaptic type I transmembrane receptor protein that is important for neuronal functionality and is genetically coupled to neuronal disorders such as attention deficit hyperactivity disorder (ADHD). To understand the molecular function of LAR, structural and biochemical studies of protein fragments derived from the ectodomain of human LAR have been performed. The crystal structure of a fragment encompassing the first four FNIII domains (LARFN1-4) showed a characteristic L shape. SAXS data suggested limited flexibility within LARFN1-4, while rigid-body refinement of the SAXS data using the X-ray-derived atomic model showed a smaller angle between the domains defining the L shape compared with the crystal structure. The capabilities of the individual LAR fragments to interact with heparin was examined using microscale thermophoresis and heparin-affinity chromatography. The results showed that the three N-terminal immunoglobulin domains (LARIg1-3) and the four C-terminal FNIII domains (LARFN5-8) both bound heparin, while LARFN1-4 did not. The low-molecular-weight heparin drug Innohep induced a shift in hydrodynamic volume as assessed by size-exclusion chromatography of LARIg1-3 and LARFN5-8, while the chemically defined pentameric heparin drug Arixtra did not. Together, the presented results suggest the presence of an additional heparin-binding site in human LAR.


Subject(s)
Receptor-Like Protein Tyrosine Phosphatases, Class 2/chemistry , Tinzaparin/chemistry , Binding Sites , Fondaparinux/chemistry , Heparin , Humans , Protein Binding , Protein Domains
7.
J Mol Biol ; 432(7): 2232-2252, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32084414

ABSTRACT

Protein fibrillation is traditionally associated with misfolding, loss of functional phenotype, and gain of toxicity in neurodegenerative diseases. However, many organisms exploit fibrils in the form of functional amyloids (FA), as seen in bacteria, such as E. coli, Salmonella, Bacillus, and Pseudomonas. Here, we provide structural information and mechanistic data for fibrillation of the smallest amyloidogenic truncation unit along with the full-length version (FL) of the major amyloid protein FapC from Pseudomonas, predicted to consist of three ß-hairpin-forming imperfect repeats separated by disordered regions. Using a series of truncation mutants, we establish that the putative loops (linkers) increase the rate of aggregation. The minimal aggregation unit consisting of a single repeat with flanking disordered regions (R3C) aggregates in a pathway dominated by secondary nucleation, in contrast to the primary nucleation favored by full-length (FL) FapC. SAXS on FapC FL, R3C, and remaining truncation constructs resolves two major coexisting species in the fibrillation process, namely pre-fibrillar loosely aggregated monomers, and cylindrical, elliptical cross-section fibrils. Solid-state NMR spectra identified rigid parts of the FapC fibril. We assigned Cα-Cß chemical shifts, indicative of a predominant ß-sheet topology with some α-helix or loop chemical shifts. Our work emphasizes the complex nature of FapC fibrillation. In addition, we are able to deduce the importance of non-repeat regions (i.e., predicted loops), which enhance the amyloid protein aggregation and their influence on the polymorphism of the fibril architecture.


Subject(s)
Amyloid/chemistry , Amyloidogenic Proteins/metabolism , Bacterial Proteins/metabolism , Protein Aggregates , Pseudomonas/metabolism , Amino Acid Sequence , Amyloidogenic Proteins/genetics , Bacterial Proteins/genetics , Mutation , Pseudomonas/genetics
8.
Protein Eng Des Sel ; 32(4): 175-190, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31788684

ABSTRACT

Anionic surfactants denature proteins at low millimolar concentrations, yet little is known about the underlying molecular mechanisms. Here, we undertake 1-µs-long atomistic molecular dynamics simulations of the denaturation of acyl coenzyme A binding protein (ACBP) and compare our results with previously published and new experimental data. Since increasing surfactant chain length is known to lead to more rapid denaturation, we studied denaturation using both the medium-length alkyl chain surfactant sodium dodecyl sulfate (SDS) and the long alkyl chain surfactant sodium hexadecyl sulfate (SHS). In silico denaturation on the microsecond timescale was not achieved using preformed surfactant micelles but required ACBP to be exposed to monomeric surfactant molecules. Micellar self-assembly occurred together with protein denaturation. To validate our analyses, we calculated small-angle X-ray scattering spectra of snapshots from the simulations. These agreed well with experimental equilibrium spectra recorded on ACBP-SDS mixtures with similar compositions. Protein denaturation occurs through the binding of partial micelles to multiple preferred binding sites followed by the accretion of surfactant monomers until these partial micelles merge to form a mature micelle and the protein chain is left disordered on the surface of the micelle. While the two surfactants attack in a similar fashion, SHS's longer alkyl chain leads to a more efficient denaturation through the formation of larger clusters that attack ACBP, a more rapid drop in native contacts, a greater expansion in size, as well as a more thorough rearrangement of hydrogen bonds and disruption of helices.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry , Animals , Cattle , Micelles , Molecular Dynamics Simulation , Protein Denaturation/drug effects , Protein Unfolding/drug effects
9.
Eur J Pharm Biopharm ; 142: 38-48, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31199978

ABSTRACT

Rheumatoid arthritis (RA) is a common autoimmune disease, which is characterized by painful chronic inflammation in the joints, and novel safe and efficacious treatments are urgently needed. RNA interference (RNAi) therapy based on small interfering RNA (siRNA) is a promising approach for silencing specific genes involved in inflammation. However, delivery of siRNA to the target site, i.e. the cytosol of immune cells, is a challenge. Here, we designed lipid-polymer hybrid nanoparticles (LPNs) composed of lipidoid and poly(DL-lactic-co-glycolic acid) loaded with a therapeutic cargo siRNA directed against the proinflammatory cytokine tumor necrosis factor (TNF), which plays a key role in the progression of RA. We compared their efficacy and safety with reference lipidoid-based stable nucleic acid lipid particles (SNALPs) in vitro and in vivo. Cryogenic transmission electron microscopy, atomic force microscopy and small-angle X-ray scattering revealed that the mode of loading of siRNA in lamellar structures differs between the two formulations. Thus, siRNA was tightly packed in LPNs, while LPNs displayed lower adhesion than SNALPs. The LPNs mediated a higher TNF silencing effect in vitro than SNALPs in the RAW 264.7 macrophage cell line activated with lipopolysaccharide. For both types of delivery systems, macropinocytosis was involved in cellular uptake. In addition, clathrin-mediated endocytosis contributed to uptake of SNALPs. LPNs loaded with TNF siRNA mediated sequence-specific suppression of inflammation in a murine experimental arthritis model upon intra-articular administration. Hence, the present study demonstrates that LPN-mediated TNF knockdown constitutes a promising approach for arthritis therapy of TNF-mediated chronic inflammatory conditions.


Subject(s)
Arthritis, Experimental/drug therapy , Inflammation/drug therapy , Lipids/chemistry , Nanoparticles/chemistry , Polymers/chemistry , RNA, Small Interfering/chemistry , Tumor Necrosis Factor-alpha/chemistry , Animals , Arthritis, Rheumatoid/drug therapy , Cell Line , Drug Compounding/methods , Female , Gene Silencing/physiology , Humans , Injections, Intra-Articular/methods , Mice , Mice, Inbred BALB C , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , RAW 264.7 Cells , RNA Interference/physiology , RNA, Small Interfering/administration & dosage , Tumor Necrosis Factor-alpha/administration & dosage
10.
Chem Sci ; 11(3): 699-712, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-34123043

ABSTRACT

Interactions between proteins and surfactants are of relevance in many applications including food, washing powder formulations, and drug formulation. The anionic surfactant sodium dodecyl sulfate (SDS) is known to unfold globular proteins, while the non-ionic surfactant octaethyleneglycol monododecyl ether (C12E8) can be used to refold proteins from their SDS-denatured state. While unfolding have been studied in detail at the protein level, a complete picture of the interplay between protein and surfactant in these processes is lacking. This gap in our knowledge is addressed in the current work, using the ß-sheet-rich globular protein ß-lactoglobulin (bLG). We combined stopped-flow time-resolved SAXS, fluorescence, and circular dichroism, respectively, to provide an unprecedented in-depth picture of the different steps involved in both protein unfolding and refolding in the presence of SDS and C12E8. During unfolding, core-shell bLG-SDS complexes were formed within ∼10 ms. This involved an initial rapid process where protein and SDS formed aggregates, followed by two slower processes, where the complexes first disaggregated into single protein structures situated asymmetrically on the SDS micelles, followed by isotropic redistribution of the protein. Refolding kinetics (>100 s) were slower than unfolding (<30 s), and involved rearrangements within the mixing deadtime (∼5 ms) and transient accumulation of unfolded monomeric protein, differing in structure from the original bLG-SDS structure. Refolding of bLG involved two steps: extraction of most of the SDS from the complexes followed by protein refolding. These results reveal that surfactant-mediated unfolding and refolding of proteins are complex processes with rearrangements occurring on time scales from sub-milliseconds to minutes.

11.
Colloids Surf B Biointerfaces ; 175: 498-508, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30572158

ABSTRACT

Treatment of polymicrobial infections requires combination therapy with drugs that have different antimicrobial spectra and possibly work in synergy. However, the different pharmacokinetics and adverse side effects challenge the simultaneous delivery of multiple drugs at the appropriate concentrations to the site of infection. Formulation of multiple drugs in nano-carrier systems may improve therapeutic efficacy by increasing the local concentration and lowering the systemic concentration, leading to fewer side effects. In this study, we loaded polymyxin B and vancomycin on bare and carboxyl-modified mesoporous silica nanoparticles (B-MSNs and C-MSNs, respectively) to achieve simulataneous local delivery of antibiotics against Gram-positive and -negative bacteria. Polymyxin B adsorbed preferentially to nanoparticles compared to vancomycin. The total antibiotic loading was 563 µg and 453 µg per mg B-MSNs or C-MSNs, respectively. Both B-MSNs and C-MSNs loaded with antibiotics were effective against Gram-negative and Gram-positive bacteria. The antibiotics had synergistic interactions against Gram-negative bacteria, and the antimicrobial efficacy was higher for antibiotic-loaded C-MSNs compared to free antibiotics at the same concentration even though the cytotoxicity was lower. Our study shows that formulations of existing antibiotics in nanocarrier systems can improve their therapeutic efficiency, indicating that combination therapy with drug-loaded silica nanoparticles may provide a better treatment outcome for infections that require high concentrations of multiple drugs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biocompatible Materials/pharmacology , Drug Carriers/chemistry , Drug Synergism , Metal Nanoparticles/administration & dosage , Silicon Dioxide/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemistry , Cell Survival , Cells, Cultured , Humans , Metal Nanoparticles/chemistry , Polymyxin B/administration & dosage , Polymyxin B/chemistry , Polymyxin B/pharmacology , Porosity , Vancomycin/administration & dosage , Vancomycin/chemistry , Vancomycin/pharmacology
12.
Proteins ; 86(9): 912-923, 2018 09.
Article in English | MEDLINE | ID: mdl-29722065

ABSTRACT

RipA plays a vital role during cell division of Mycobacterium tuberculosis by degrading the cell wall peptidoglycan at the septum, allowing daughter cell separation. The peptidoglycan degrading activity relies on the NlpC/P60 domain, and as it is potentially harmful when deregulated, spatial and temporal control is necessary in this process. The N-terminal domain of RipA has been proposed to play an inhibitory role blocking the C-terminal NlpC/P60 domain. Accessibility of the active site cysteine residue is however not limited by the presence of the N-terminal domain, but by the lid-module of the inter-domain linker, which is situated in the peptide binding groove of the crystal structures of the catalytic domain. The 2.2 Å resolution structure of the N-terminal domain, determined by Se-SAD phasing, reveals an all-α-fold with 2 long α-helices, and shows similarity to bacterial periplasmic protein domains with scaffold-building role. Size exclusion chromatography and SAXS experiments are consistent with dimer formation of this domain in solution. The SAXS data from the periplasmic two-domain RipA construct suggest a rigid baton-like structure of the N-terminal module, with the catalytic domain connected by a 24 residue long flexible linker. This flexible linker allows for a catalytic zone, which is part of the spatiotemporal control of peptidoglycan degradation.


Subject(s)
Bacterial Proteins/metabolism , Cell Wall/enzymology , Hydrolases/metabolism , Bacterial Proteins/chemistry , Biocatalysis , Catalytic Domain , Hydrolases/chemistry , Mycobacterium tuberculosis/metabolism , Peptidoglycan/metabolism , Protein Conformation , Protein Multimerization
13.
ACS Nano ; 11(9): 9041-9047, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28806061

ABSTRACT

A variety of different tiles for the construction of DNA lattices have been developed since the structural DNA nanotechnology field was born. The majority of these are designed for the realization of close-packed structures, where DNA helices are arranged in parallel and tiles are connected through sticky ends. Assembly of such structures requires the use of cation-rich buffers to minimize repulsion between parallel helices, which poses limits to the application of DNA nanostructures. Wireframe structures, on the other hand, are less susceptible to salt concentration, but the assembly of wireframe lattices is limited by the availability of tiles and motifs. Herein, we report the construction of a polyhedral 12-arm junction for the self-assembly of wireframe DNA lattices. Our approach differs from traditional assembly of DNA tiles through hybridization of sticky ends. Instead, the assembly approach presented here uses small polyhedral shapes as connecting points and branch points of wires in a lattice structure. Using this design principle and characterization techniques, such as transmission electron microscopy, single-particle reconstruction, patterning of gold nanoparticles, dynamic light scattering, UV melting analyses, and small-angle X-ray scattering among others, we demonstrated formation of finite 12-way junction structures, as well as 1D and 2D short assemblies, demonstrating an alternative way of designing polyhedral structures and lattices.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Microscopy, Electron, Transmission , Models, Molecular , Nucleic Acid Conformation
14.
ACS Nano ; 11(1): 1080-1090, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28048943

ABSTRACT

Atherosclerosis and its clinical consequences are the leading cause of death in the western hemisphere. While many studies throughout the last decades have aimed at understanding the disease, the clinical markers in use today still fail to accurately predict the risks. The role of the current main clinical indicator, low density lipoprotein (LDL), in depositing fat to the vessel wall is believed to be the onset of the process. However, many subfractions of the LDL, which differ both in structure and composition, are present in the blood and among different individuals. Understanding the relationship between LDL structure and composition is key to unravel the specific role of various LDL components in the development and/or prevention of atherosclerosis. Here, we describe a model for analyzing small-angle X-ray scattering data for rapid and robust structure determination for the LDL. The model not only gives the overall structure but also the particular internal layering of the fats inside the LDL core. Thus, the melting of the LDL can be followed in situ as a function of temperature for samples extracted from healthy human patients and purified using a double protocol based on ultracentrifugation and size-exclusion chromatography. The model provides information on: (i) the particle-specific melting temperature of the core lipids, (ii) the structural organization of the core fats inside the LDL, (iii) the overall shape of the particle, and (iv) the flexibility and overall conformation of the outer protein/hydrophilic layer at a given temperature as governed by the organization of the core. The advantage of this method over other techniques such as cryo-TEM is the possibility of in situ experiments under near-physiological conditions which can be performed relatively fast (minutes at home source, seconds at synchrotron). This approach now allows the monitoring of structural changes in the LDL upon different stresses from the environment, such as changes in temperature, oxidation, or external agents used or currently in development against atherosclerotic plaque build-up and which are targeting the LDL.

15.
Acta Biomater ; 49: 555-562, 2017 02.
Article in English | MEDLINE | ID: mdl-27872013

ABSTRACT

Bioinspired in vitro collagen mineralization experiments have been performed in the presence of citrate and the combined role of the two bone organic matrix components in controlling mineral formation was investigated for the first time. Mineralized and non-mineralized collagen fibrils have been in depth characterized by combining small- and wide-angle X-ray scattering (SAXS/WAXS) techniques with Atomic Force Microscopy (AFM) imaging. A synergic effect of collagen and citrate in driving the formation of long-term stable amorphous calcium phosphate (ACP) nanoparticles with platy morphology was found. AFM images on mineralized collagen fibrils revealed that some of the ACP nanoparticles were deposited on the intramolecular nanoscopic holes of collagen fibrils. STATEMENT OF SIGNIFICANCE: Citrate is an important component of the bone organic matrix but its specific role in bone mineralization is presently unclear. In this work, bioinspired in vitro collagen mineralization experiments in the presence of citrate have been carried out and the combined role of collagen and citrate in controlling mineral formation has been addressed for the first time. Through X-ray scattering and Atomic Force Microscopy characterizations on mineralized and non-mineralized collagen fibrils, we have found that citrate in synergy with collagen stabilizes an amorphous calcium phosphate (ACP) phase with platy morphology over one week and controls its deposition on collagen fibrils.


Subject(s)
Calcium Phosphates/chemistry , Citric Acid/chemistry , Collagen/chemistry , Animals , Calcification, Physiologic , Horses , Microscopy, Atomic Force , Scattering, Small Angle , X-Ray Diffraction
16.
Nat Commun ; 5: 5072, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25262927

ABSTRACT

chTOG is a conserved microtubule polymerase that catalyses the addition of tubulin dimers to promote microtubule growth. chTOG interacts with TACC3, a member of the transforming acidic coiled-coil (TACC) family. Here we analyse their association using the Xenopus homologues, XTACC3 (TACC3) and XMAP215 (chTOG), dissecting the mechanism by which their interaction promotes microtubule elongation during spindle assembly. Using SAXS, we show that the TACC domain (TD) is an elongated structure that mediates the interaction with the C terminus of XMAP215. Our data suggest that one TD and two XMAP215 molecules associate to form a four-helix coiled-coil complex. A hybrid methods approach was used to define the precise regions of the TACC heptad repeat and the XMAP215 C terminus required for assembly and functioning of the complex. We show that XTACC3 can induce the recruitment of larger amounts of XMAP215 by increasing its local concentration, thereby promoting efficient microtubule elongation during mitosis.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Transcription Factors/metabolism , Xenopus Proteins/metabolism , Amino Acid Sequence , Animals , Calorimetry , Circular Dichroism , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , Scattering, Small Angle , Spindle Apparatus/metabolism , Surface Plasmon Resonance , Temperature , Xenopus
17.
Nature ; 501(7467): 430-4, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-23965626

ABSTRACT

The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1). Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR (ref. 5), TLF-2 enters trypanosomes independently of TbHpHbR (refs 4, 5). APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic ß-sheet of the T. b. gambiense-specific glycoprotein (TgsGP), which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.


Subject(s)
Apolipoproteins/blood , Apolipoproteins/metabolism , Lipoproteins, HDL/blood , Lipoproteins, HDL/metabolism , Trypanosoma brucei gambiense/physiology , Africa , Animals , Animals, Genetically Modified , Apolipoprotein L1 , Apolipoproteins/antagonists & inhibitors , Apolipoproteins/toxicity , Cell Membrane/chemistry , Cell Membrane/metabolism , Cysteine Proteases/metabolism , Haptoglobins/metabolism , Hemoglobins/metabolism , Hemolysis , Humans , Hydrophobic and Hydrophilic Interactions , Lipid Metabolism , Lipoproteins, HDL/antagonists & inhibitors , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/toxicity , Parasites/pathogenicity , Parasites/physiology , Protein Structure, Secondary , Serum/chemistry , Serum/parasitology , Trypanosoma brucei gambiense/drug effects , Trypanosoma brucei gambiense/pathogenicity , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/chemistry , Variant Surface Glycoproteins, Trypanosoma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...