Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Harmful Algae ; 95: 101817, 2020 05.
Article in English | MEDLINE | ID: mdl-32439060

ABSTRACT

In spring 2016, two silos containing liquid nitrogen-containing fertilizer collapsed on a harbor in Fredericia, Denmark. More than 2,750 tons of fertilizer spilled into inner Danish waters. A bloom of Pseudo-nitzschia occurred approximately one month after the incident. The bloom caused a 5-week quarantine of numerous mussel-harvesting areas along the eastern coast of Jutland. The levels of domoic acid measured up to 49 mg kg-1 in mussel meat after the bloom. In the months following the event, the species diversity of phytoplankton was low, while the abundance was high comprising few dominant species including Pseudo-nitzschia. The main part of the liquid nitrogen-containing compound was urea, chemically produced for agricultural use. To investigate the potential impact of urea on Pseudo-nitzschia, four strains, including one strain of P. delicatissima, two of P. seriata and one of P. obtusa, were exposed each to three concentrations of urea in a batch culture experiment: 10 µM, 20 µM and 100 µM N urea, and for comparison one concentration of nitrate (10 µM). Nitrate, ammonium, and urea were metabolized at different rates. Pseudo-nitzschia obtusa produced domoic acid and grew best at low urea concentrations. Both P. seriata strains had a positive correlation between urea concentration and growth rate, and the highest growth rate in the nitrate treatment. One strain of P. seriata produced domoic acid peaking at low N loads (10 µM N urea and 10 µM N nitrate). In conclusion, the ability to adapt to the available nitrogen source and retain a high growth rate was exceedingly varying and not only species-specific but also strain specific.


Subject(s)
Diatoms , Fertilizers , Nitrates , Phytoplankton , Urea
3.
Sci Total Environ ; 709: 136144, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31905569

ABSTRACT

Eutrophication is a serious threat to aquatic ecosystems globally with pronounced negative effects in the Baltic and other semi-enclosed estuaries and regional seas, where algal growth associated with excess nutrients causes widespread oxygen free "dead zones" and other threats to sustainability. Decades of policy initiatives to reduce external (land-based and atmospheric) nutrient loads have so far failed to control Baltic Sea eutrophication, which is compounded by significant internal release of legacy phosphorus (P) and biological nitrogen (N) fixation. Farming and harvesting of the native mussel species (Mytilus edulis/trossulus) is a promising internal measure for eutrophication control in the brackish Baltic Sea. Mussels from the more saline outer Baltic had higher N and P content than those from either the inner or central Baltic. Despite their relatively low nutrient content, harvesting farmed mussels from the central Baltic can be a cost-effective complement to land-based measures needed to reach eutrophication status targets and is an important contributor to circularity. Cost effectiveness of nutrient removal is more dependent on farm type than mussel nutrient content, suggesting the need for additional development of farm technology. Furthermore, current regulations are not sufficiently conducive to implementation of internal measures, and may constitute a bottleneck for reaching eutrophication status targets in the Baltic Sea and elsewhere.


Subject(s)
Bivalvia , Agriculture , Animals , Baltic States , Eutrophication , Nitrogen , Oceans and Seas , Phosphorus
SELECTION OF CITATIONS
SEARCH DETAIL
...