Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 8(12)2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31817744

ABSTRACT

Bone defects resulting from trauma, disease, surgery or congenital malformations are a significant health problem worldwide. Consequently, bone is the second most transplanted tissue just after blood. Although bone grafts (BGs) have been used for decades to improve bone repairs, none of the currently available BGs possesses all the desirable characteristics. One way to overcome such limitations is to introduce the feature of controlled release of active bone-promoting biomolecules: however, the administration of, e.g., recombinant Bone morphogenetic proteins (BMPs) have been used in concentrations overshooting physiologically occurring concentrations and has thus raised concerns as documented side effects were recorded. Secondly, most such biomolecules are very sensitive to organic solvents and this hinders their use. Here, we present a novel xeno-hybrid bone graft, SmartBonePep®, with a new type of biomolecule (i.e., intrinsically disordered proteins, IDPs) that is both resistant to processing with organic solvent and both triggers bone cells proliferation and differentiation. SmartBonePep® is an advanced and improved modification of SmartBone®, which is a bone substitute produced by combining naturally-derived mineral bone structures with resorbable polymers and collagen fragments. Not only have we demonstrated that Intrinsically Disordered Proteins (IDPs) can be successfully and safely loaded onto a SmartBonePep®, withstanding the hefty manufacturing processes, but also made them bioavailable in a tuneable manner and proved that these biomolecules are a robust and resilient biomolecule family, being a better candidate with respect to other biomolecules for effectively producing the next generation bone grafts. Most other biomolecules which enhances bone formation, e.g., BMP, would not have tolerated the organic solvent used to produce SmartBonePep®.

2.
J Clin Periodontol ; 46 Suppl 21: 6-11, 2019 06.
Article in English | MEDLINE | ID: mdl-31215113

ABSTRACT

BACKGROUND AND AIMS: To describe the biology of alveolar bone regeneration. MATERIAL AND METHODS: Four comprehensive reviews were performed on (a) mesenchymal cells and differentiation factors leading to bone formation; (b) the critical interplay between bone resorbing and formative cells; (c) the role of osteoimmunology in the formation and maintenance of alveolar bone; and (d) the self-regenerative capacity following bone injury or tooth extraction were prepared prior to the workshop. RESULTS AND CONCLUSIONS: This summary information adds to the fuller understanding of the alveolar bone regenerative response with implications to reconstructive procedures for patient oral rehabilitation. The group collectively formulated and addressed critical questions based on each of the reviews in this consensus report to advance the field. The report concludes with identified areas of future research.


Subject(s)
Biological Factors , Guided Tissue Regeneration, Periodontal , Bone Regeneration , Consensus , Humans , Periodontics
3.
Protein Expr Purif ; 48(1): 134-41, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16495078

ABSTRACT

Amelogenin is a dental enamel matrix protein involved in formation of dental enamel. In this study, we have expressed two different recombinant murine amelogenins in Escherichia coli: the untagged rM179, and the histidine tagged rp(H)M180, identical to rM179 except that it carries the additional N-terminal sequence MRGSHHHHHHGS. The effects of the histidine tag on expression levels, and on growth properties of the amelogenin expressing cells were studied. Purification of a crude protein extract containing rp(H)M180 was also carried out using IMAC and reverse-phase HPLC. The results of this study showed clearly that both growth properties and amelogenin expression levels were improved for E. coli cells expressing the histidine tagged amelogenin rp(H)M180, compared to cells expressing the untagged amelogenin rM179. The positive effect of the histidine tag on amelogenin expression is proposed to be due to the hydrophilic nature of the histidine tag, generating a more hydrophilic amelogenin, which is more compatible with the host cell. Human osteoblasts treated with the purified rp(H)M180 showed increased levels of secreted osteocalcin, compared to untreated cells. This response was similar to cells treated with enamel matrix derivate, mainly composed by amelogenin, suggesting that the recombinant protein is biologically active. Thus, the histidine tag favors expression and purification of biologically active recombinant amelogenin.


Subject(s)
Amelogenin/biosynthesis , Escherichia coli/genetics , Histidine/genetics , Recombinant Fusion Proteins/biosynthesis , Amelogenin/genetics , Amino Acid Sequence , Animals , Cells, Cultured , Escherichia coli/growth & development , Escherichia coli/metabolism , Histidine/chemistry , Humans , Mice , Molecular Sequence Data , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocalcin/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...