Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 356: 124317, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844041

ABSTRACT

Artificial Light at Night (ALAN) threatens to disrupt most natural habitats and species, including those in coastal settings, where a growing number of studies have identified ALAN impacts. A careful examination of the light properties behind those impacts is important to better understand and manage the effects of this stressor. This study focused on ALAN monochromatic wavelengths and examined which types of light spectra altered the natural activity of two prominent coastal species from the Pacific southeast: the talitroid amphipod Orchestoidea tuberculata and the oniscoid isopod Tylos spinulosus. We compared the natural daylight/night activity of these organisms with the one they exhibit when exposed to five different ALAN wavelengths: lights in the violet, blue, green, amber, and red spectra. Our working hypothesis was that ALAN alters these species' activity at night, but the magnitude of such impact differs depending on light wavelengths. Measurements of activity over 24 h cycles for five consecutive days and in three separate experiments confirmed a natural circadian activity pattern in both species, with strong activity at night (∼90% of probability) and barely any activity during daylight. However, when exposed to ALAN, activity declined significantly in both species under all light wavelengths. Interestingly, amphipods exhibited moderate activity (∼40% of probability) when exposed to red lights at night, whereas isopods shifted some of their activity to daylight hours in two of the experiments when exposed to blue or amber lights, suggesting a possible alteration in this species circadian rhythm. Altogether, our results were consistent with our working hypothesis, and suggest that ALAN reduces night activity, and some wavelengths have differential effects on each species. Differences between amphipods and isopods are likely related to their distinct adaptations to natural low-light habitat conditions, and therefore distinct sensitivity to ALAN.

2.
Mar Pollut Bull ; 202: 116352, 2024 May.
Article in English | MEDLINE | ID: mdl-38604080

ABSTRACT

Artificial light at night (ALAN) is becoming a widespread stressor in coastal ecosystems, affecting species that rely on natural day/night cycles. Yet, studies examining ALAN effects remain limited, particularly in the case of sessile species. This study assessed the effects of ALAN upon the feeding activity and two molecular indicators in the widespread plumose sea anemone Metridium senile. Anemones were exposed to either natural day/night or ALAN conditions to monitor feeding activity, and tissue samples were collected to quantify proteins and superoxide dismutase (SOD) enzyme concentrations. In day/night conditions, sea anemones showed a circadian rhythm of activity in which feeding occurs primarily at night. This rhythm was altered by ALAN, which turned it into a reduced and more uniform pattern of feeding. Consistently, proteins and SOD concentrations were significantly lower in anemones exposed to ALAN, suggesting that ALAN can be harmful to sea anemones and potentially other marine sessile species.


Subject(s)
Light , Sea Anemones , Superoxide Dismutase , Animals , Sea Anemones/physiology , Superoxide Dismutase/metabolism , Feeding Behavior , Circadian Rhythm
3.
Genes (Basel) ; 14(3)2023 03 08.
Article in English | MEDLINE | ID: mdl-36980946

ABSTRACT

Adipose-derived stem cells (ADSCs) are used in tissue regeneration therapies. The objective of this study is to identify stable reference genes (RGs) for use in gene expression studies in a characterized equine adipose-derived mesenchymal stem cell (EADMSC) differentiation model. ADSCs were differentiated into adipocytes (ADs) or osteoblasts (OBs), and the proteomes from these cells were analyzed by liquid chromatography tandem mass spectrometry. Proteins that were stably expressed in all three cells types were identified, and the mRNA expression stabilities for their corresponding genes were validated by RT-qPCR. PPP6R1, CCDC97, and then either ACTB or EPHA2 demonstrated the most stable mRNA levels. Normalizing target gene Cq data with at least three of these RGs simultaneously, as per MIQE guidelines (PPP6R1 and CCDC97 with either ACTB or EPHA2), resulted in congruent conclusions. FABP5 expression was increased in ADs (5.99 and 8.00 fold, p = 0.00002 and p = 0.0003) and in OBs (5.18 and 5.91 fold, p = 0.0011 and p = 0.0023) relative to ADSCs. RUNX2 expression was slightly higher in ADs relative to ADSCs (1.97 and 2.65 fold, p = 0.04 and p = 0.01), but not in OBs (0.9 and 1.03 fold, p = 0.58 and p = 0.91).


Subject(s)
Mesenchymal Stem Cells , Proteome , Animals , Horses/genetics , Proteome/genetics , Proteome/metabolism , RNA-Directed DNA Polymerase/metabolism , Real-Time Polymerase Chain Reaction , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Gene Expression , RNA, Messenger/metabolism , DNA-Directed RNA Polymerases/metabolism
4.
Mar Pollut Bull ; 184: 114147, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152494

ABSTRACT

The influence of artificial light at night (ALAN) is becoming evident in marine sandy beaches. These habitats are dominated by species reliant on natural daylight/night regimes, making the identification of biological indicators a priority. We assessed the applicability of hemocyanin, an oxygen-transport protein in the hemolymph of many invertebrates, as an indicator of ALAN-related stress. Unlike total proteins, hemocyanins signal metabolic function and stress, so we expected them to increase in response to ALAN. We adapted spectrophotometry protocols to describe spatial variation in hemocyanins and total proteins in four populations of the talitroid amphipod Americorchestia longicornis. Then, a two-week experiment tested for changes in response to ALAN. Hemocyanin levels increased by 17 % and 40 % with respect to experimental controls after 7 and 14 d, respectively, and were higher than any measurements conducted in the field. These results suggest good prospects for hemocyanin as an indicator of ALAN effects.


Subject(s)
Amphipoda , Animals , Hemocyanins , Environmental Biomarkers , Light Pollution , Oxygen , Carrier Proteins , Light
5.
Sci Total Environ ; 780: 146568, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33774285

ABSTRACT

Artificial light at night (ALAN) is a growing source of stress for organisms and communities worldwide. These include species associated with sandy beaches, which consume and process stranded seaweeds (wrack) in these ecosystems. This study assessed the influence of ALAN on the activity and feeding behaviour of Americorchestia longicornis, a prominent talitrid amphipod living in sandy beaches of Prince Edward Island, Atlantic Canada. First, two parallel field surveys were conducted to document the natural daily cycle of activity of this species. Then, three related hypotheses were used to assess whether ALAN disrupts its locomotor activity, whether that disruption lasts over time, and whether it affects the feeding behaviour and growth of the amphipods. Tanks equipped with actographs recorded amphipod locomotor activity for ~7 days and then its potential recovery (after ALAN removal) for additional ~3 days. Separate tanks were used to compare amphipod food consumptions rates, absorption efficiency and growth rates under natural daylight / night (control) and altered conditions (ALAN). The results of these manipulations provide support to two of the three hypotheses proposed and indicate that ALAN was temporarily detrimental for (i.e. significantly reduced) the surface activity, consumption rates and absorption efficiency of the amphipods, whereas growth rates remained unaffected. The results also rejected the remaining hypothesis and suggest that the plasticity exhibited by these amphipods confer them the capacity to recover their natural rhythm of activity shortly after ALAN was removed from the system. Combined, these results suggest that ALAN has a strong, albeit temporary, influence upon the abundant populations of A. longicornis. Such influence has implications for the ecosystem role played by these amphipods as consumers and processors of the subsidy of stranded seaweeds entering these ecosystems.


Subject(s)
Amphipoda , Animals , Canada , Ecosystem , Environmental Pollution , Feeding Behavior , Light
6.
Mar Pollut Bull ; 163: 111928, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33418341

ABSTRACT

Human growth has caused an unprecedented increase in artificial light at night (ALAN). In coastal habitats, many species rely on day/night cycles to regulate various aspects of their life history and these cycles can be altered by this stressor. This study assessed the influence of ALAN on the early (cyprid) and late (spat) settlement stages of the acorn barnacle Semibalanus balanoides, a species widely distributed in natural and man-made coastal habitats of the North Atlantic. A newly designed settlement plate, originally for studies in rocky intertidal habitats in the southeast Pacific, was adapted to measure settlement rates on man-made habitats -wharf seawalls- located in Atlantic Canada. Plates equipped with a small LED diode powered by an internal battery (ALAN plates) were used to quantify settlement rates in comparison to plates lacking a light source (controls). These plates were deployed for 6 d in the mid-intertidal levels, where adult barnacles were readily visible. ALAN and control plates collected large number of settlers and showed to be suitable for this type of man-made habitats. The number of early settlers (cyprids) did not differ between plates but the number of late settlers (spat) was significantly lower in ALAN plates than in controls. These results suggest that light pollution has little influence on the early stages of the acorn barnacle settlement but is clearly detrimental to its late stages. As barnacles dominate in many natural and man-made hard substrates, it is likely that ALAN also has indirect effects on community structure.


Subject(s)
Thoracica , Animals , Canada , Ecosystem , Environmental Pollution , Humans , Light , Seafood
7.
PeerJ ; 8: e10540, 2020.
Article in English | MEDLINE | ID: mdl-33391877

ABSTRACT

In marine sedimentary bottoms, mussels and macroalgae have long been recognized as important autogenic engineers that create habitat and modify abiotic conditions. The structural complexity added by bivalves and macroalgae may also mediate intraguild predation amongst marine decapod crustaceans. While spatial distributions of these ecosystem engineers frequently overlap, there is limited understanding of compounded effects when more than one engineer is present. Here we demonstrate that the coexistence of two ecosystem engineers may create habitat valuable for the survival of a small native species, the Atlantic mud crab (Panopeus herbstii), in the presence of the invasive green crab (Carcinus maenas). Using laboratory and field habitat mimics, we measured mud crab survival rates as a proxy for refuge quality. We compared the refuge provided by a unique association between shells of blue mussels (Mytilus edulis) and the giant strain of Irish moss (Chondrus crispus) to that provided by bare substrate, and by each engineer alone. These experiments revealed that the association of giant Irish moss with blue mussel shells positively and non-additively increased mud crab survival compared to the other less complex habitat mimics. In contrast, parallel experiments revealed that high habitat complexity was less important for young green crabs to survive predation from large conspecifics. These results suggest that the impact of ecosystem engineers on trophic dynamics should be considered in a broader, whole-community context encompassing multiple habitat-forming species present.

SELECTION OF CITATIONS
SEARCH DETAIL
...