Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37111530

ABSTRACT

The effectiveness of current antifungal therapies is hampered by the emergence of drug resistance strains, highlighting an urgent need for new alternatives such as adjuvant antifungal treatments. This study aims to examine the synergism between propranolol and antifungal drugs, based on the premise that propranolol is known to inhibit fungal hyphae. In vitro studies demonstrate that propranolol potentiates the antifungal activity of azoles and that the effect is more pronounced for propranolol-itraconazole combination. Using an in vivo murine systemic candidemia model, we show that propranolol-itraconazole combination treatment resulted in a lower rate of body weight loss, decreased kidney fungal bioburden and renal inflammation when compared to propranolol and azole treatment alone or untreated control. Altogether, our findings suggest that propranolol increases the efficacy of azoles against C. albicans, offering a new therapeutic strategy against invasive fungal infections.

2.
Sci Rep ; 10(1): 14709, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32895414

ABSTRACT

In humans, the longitudinal characterisation of early optic nerve head (ONH) damage in ocular hypertension (OHT) is difficult as patients with glaucoma usually have structural ONH damage at the time of diagnosis. Previous studies assessed glaucomatous ONH cupping by measuring the anterior lamina cribrosa depth (LCD) and minimal rim width (MRW) using optical coherence tomography (OCT). In this study, we induced OHT by repeated intracameral microbead injections in 16 cynomolgus primates (10 unilateral; 6 bilateral) and assessed the structural changes of the ONH longitudinally to observe early changes. Elevated intraocular pressure (IOP) in OHT eyes was maintained for 7 months and serial OCT measurements were performed during this period. The mean IOP was significantly elevated in OHT eyes when compared to baseline and compared to the control eyes. Thinner MRW and deeper LCD values from baseline were observed in OHT eyes with the greatest changes seen between month 1 and month 2 of OHT. Both the mean and maximum IOP values were significant predictors of MRW and LCD changes, although the maximum IOP was a slightly better predictor. We believe that this model could be useful to study IOP-induced early ONH structural damage which is important for understanding glaucoma pathogenesis.


Subject(s)
Ocular Hypertension/pathology , Optic Disk/pathology , Optic Nerve Diseases/pathology , Animals , Disease Models, Animal , Female , Glaucoma/pathology , Intraocular Pressure/physiology , Longitudinal Studies , Macaca mulatta , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence/methods , Tonometry, Ocular/methods , Visual Fields/physiology
3.
Eye Contact Lens ; 46(5): 274-280, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32134799

ABSTRACT

OBJECTIVES: The purpose of this study was to develop a reproducible preclinical Fusarium solani keratitis model, which would allow comparative testing of currently available antifungals (NATACYN [Alcon, Fort Worth, TX], voriconazole 1%, and amphotericin B 0.1%) as well as efficacy testing of new antifungals for translation into clinical practice in the future. METHODS: The rabbit F. solani keratitis model was developed in New Zealand white rabbits using local and systemic immunosuppression. Infection was introduced by intrastromal injection of F. solani spores into one of the immunosuppressed rabbit eyes while the contralateral eye was a control. Progress of the infection was assessed by the clinical features, histopathology, and viable fungal counts. In this study, the efficacy of currently available antifungals (NATACYN [Alcon], voriconazole 1%, and amphotericin B 0.1%) was compared. Rabbits were randomly divided (n=4 in each group), and the respective antifungal was instilled topically 5 times/day for 7 days. Treatment effects were analyzed by evaluating the anterior segment with the help of slit-lamp, histopathological findings and viable fungal culture at the end of the experiment. RESULTS: We report the development of a reproducible and progressive rabbit F. solani keratitis model as shown by the substantial viable fungal counts (3 log CFU), the presence of large patchy lesions and substantial hypopyon in the 12-day model correlated with specific histopathological analysis for fungus (extended F. solani hyphae from midcorneal stroma into the anterior chamber and traverse Descemet membrane with anterior chamber suppurative plaque). Voriconazole 1% and NATACYN revealed significant reduction of the fungal wound area (P=0.02 and 0.021), respectively, while amphotericin B 0.1% exhibited P value of 0.083 compared with their infected nontreated controls. Voriconazole 1% and amphotericin B 0.1% showed significant viable fungal count differences (P=0.004 and 0.01), respectively, whereas P value of NATACYN was 0.337 compared with control infected corneas. CONCLUSION: The reported rabbit fungal keratitis model can be used for screening new antifungals and evaluating currently available antifungals to facilitate better clinical outcomes. Voriconazole 1% showed the best efficacy among the three tested currently available antifungals by showing the significant differences in both wound size and viable fungal count comparisons in our F. solani rabbit keratitis model.


Subject(s)
Eye Infections, Fungal , Fusarium , Keratitis , Pharmaceutical Preparations , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Eye Infections, Fungal/drug therapy , Keratitis/drug therapy , Rabbits
4.
Front Mol Biosci ; 7: 611584, 2020.
Article in English | MEDLINE | ID: mdl-33585560

ABSTRACT

Uveal melanoma (UM) is the most common primary adult intraocular malignancy. This rare but devastating cancer causes vision loss and confers a poor survival rate due to distant metastases. Identifying clinical and molecular features that portend a metastatic risk is an important part of UM workup and prognostication. Current UM prognostication tools are based on determining the tumor size, gene expression profile, and chromosomal rearrangements. Although we can predict the risk of metastasis fairly accurately, we cannot obtain preclinical evidence of metastasis or identify biomarkers that might form the basis of targeted therapy. These gaps in UM research might be addressed by single-cell research. Indeed, single-cell technologies are being increasingly used to identify circulating tumor cells and profile transcriptomic signatures in single, drug-resistant tumor cells. Such advances have led to the identification of suitable biomarkers for targeted treatment. Here, we review the approaches used in cutaneous melanomas and other cancers to isolate single cells and profile them at the transcriptomic and/or genomic level. We discuss how these approaches might enhance our current approach to UM management and review the emerging data from single-cell analyses in UM.

5.
Sci Rep ; 9(1): 18799, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827177

ABSTRACT

Neuroglobin is an endogenous neuroprotective protein. We determined the safety of direct delivery of Neuroglobin in the rat retina and its effects on retinal inflammatory chemokines and microglial during transient hypoxia. Exogenous Neuroglobin protein was delivered to one eye and a sham injection to the contralateral eye of six rats intravitreally. Fundus photography, Optical Coherence Topography, electroretinogram, histology and Neuroglobin, chemokines level were determined on days 7 and 30. Another 12 rats were subjected to transient hypoxia to assess the effect of Neuroglobin in hypoxia exposed retina by immunohistochemistry, retinal Neuroglobin concentration and inflammatory chemokines. Intravitreal injection of Neuroglobin did not incite morphology or functional changes in the retina. Retinal Neuroglobin protein was reduced by 30% at day 7 post hypoxia. It was restored to normoxic control levels with intravitreal exogenous Neuroglobin injections and sustained up to 30 days. IL-6, TNFα, IL-1B, RANTES, MCP-1 and VEGF were significantly decreased in Neuroglobin treated hypoxic retinae compared to non-treated hypoxic controls. This was associated with decreased microglial activation in the retina. Our findings provide proof of concept suggesting intravitreal Neuroglobin injection is non-toxic to the retina and can achieve the functional level to abrogate microglial and inflammatory chemokines responses during transient hypoxia.


Subject(s)
Chemokines/metabolism , Hypoxia/drug therapy , Microglia/drug effects , Neuroglobin/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Apoptosis/drug effects , Disease Models, Animal , Hypoxia/metabolism , Intravitreal Injections , Neuroglobin/administration & dosage , Neuroglobin/pharmacology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Rats , Retina/drug effects , Retina/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...