Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Reprod Immunol ; 164: 104255, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38797133

ABSTRACT

Women with antiphospholipid syndrome (APS) are at high risk for miscarriage and preeclampsia. Unlike pro-thrombotic systemic APS, obstetric APS is associated with insufficient placentation, as well as inflammation and vascular dysfunction at the maternal-fetal interface. Antiphospholipid antibodies (aPL) can target the placental trophoblast and induce inflammation. We reported that aPL trigger trophoblast cells to produce elevated levels of IL-8 through activation of Toll-like receptor 4 (TLR4). Downstream of TLR4, we found this IL-8 response is mediated by a TLR8-activating microRNA (miR), miR-146a-3p, which is also released by the trophoblast via extracellular vesicles (EVs). Since endothelial dysfunction is a feature of obstetric APS, we sought to determine if other miRs that can activate the RNA sensors, TLR7 and/or TLR8, are released by the trophoblast via EVs after exposure to aPL, and if these EVs can activate human endometrial endothelial cells (HEECs). Using a human first trimester extravillous trophoblast cell line we found that aPL elevated their release of small EVs (<150 nm). These extracellular vesicles released from trophoblast cells exposed to aPL expressed elevated levels of TLR7/8-activating miR-21a and miR-29a, in addition to the previously reported miR-146a-3p. Extracellular vesicles from aPL-exposed human trophoblast cells triggered human endometrial endothelial cells to generate an inflammatory IL-8 response, in part through TLR7. This study highlights EVs as a mode of communication between the placenta and the maternal vasculature, as well as a potential role for TLR7/8-activating miRs in contributing to inflammation at the maternal-fetal interface in obstetric APS.

2.
J Reprod Immunol ; 157: 103945, 2023 06.
Article in English | MEDLINE | ID: mdl-37062109

ABSTRACT

Growing evidence suggests a relationship between elevated circulating placental-derived cell-free fetal DNA (cffDNA) and preeclampsia. Hypomethylation of CpG motifs, a hallmark of cffDNA, allows it to activate Toll-like receptor 9 (TLR9). Using an in vitro human first trimester extravillous trophoblast cell model, we sought to determine if trophoblast-derived cffDNA and ODN 2216, a synthetic unmethylated CpG oligodeoxynucleotide, directly impacted spontaneous trophoblast migration. The role of the DNA sensors TLR9, AIM2, and cGAS was assessed using the inhibitor A151. To test whether any effects could be reversed by therapeutic agents, trophoblasts were treated with or without cffDNA or ODN 2216 with or without aspirin (ASA; a known cGAS inhibitor), aspirin-triggered lipoxin (ATL), or hydroxychloroquine (HCQ; a known TLR9 inhibitor). Trophoblast-derived cffDNA and ODN 2216 reduced trophoblast migration without affecting cell viability. Reduced trophoblast migration in response to cffDNA or ODN 2216 was reversed by A151. cffDNA inhibition of trophoblast migration was reversed by HCQ, while ASA or ATL had no effect. In contrast ODN 2216 inhibition of trophoblast migration was reversed by ASA, ATL and HCQ. Our findings suggest that cffDNA can exert a local effect on placental function by impairing trophoblast migration through activation of innate immune DNA sensors. HCQ, a known TLR9 inhibitor, reversed the effects of cffDNA on trophoblast migration. Greater insights into the molecular underpinnings of how cffDNA impacts placentation can aid in our understanding of the pathogenesis of preeclampsia, and in the development of novel therapeutic approaches for preeclampsia therapy.


Subject(s)
Cell-Free Nucleic Acids , Pre-Eclampsia , Pregnancy , Female , Humans , Trophoblasts/physiology , Placenta , Hydroxychloroquine , Toll-Like Receptor 9 , Cell-Free Nucleic Acids/pharmacology , Cell Line , DNA/pharmacology , Aspirin/pharmacology
3.
J Reprod Immunol ; 155: 103786, 2023 02.
Article in English | MEDLINE | ID: mdl-36528909

ABSTRACT

Serotonin Reuptake Inhibitors (SRIs) are often used as first line therapy for depression and other psychiatric disorders. SRI use during pregnancy is associated with preterm premature rupture of membranes (PPROM) and subsequent preterm birth. The objective of this study was to investigate the mechanism(s) responsible for SRI-associated PPROM. Putative mechanisms underlying PPROM include fetal membrane (FM) inflammation, increased apoptosis, and/or accelerated senescence, the later which may be reversed by statins. Human FM explants from normal term deliveries without labor, infection, or antidepressant use were treated with or without the SRI, fluoxetine (FLX), either alone or in the presence of a p38 MAPK inhibitor or the statins, simvastatin or rosuvastatin. FMs were also collected from women either unexposed or exposed to FLX during pregnancy. FLX significantly increased FM p38 MAPK activity and secretion of inflammatory IL-6. Inhibition of p38 MAPK reduced FM IL-6 secretion in response to FLX. Statins did not reduce the SRI-induced FM IL-6 production. FMs from women exposed to FLX during pregnancy expressed elevated levels of p38 MAPK activity compared to matched unexposed women. FMs exposed to FLX did not exhibit signs of increased apoptosis and/or accelerated senescence. These results indicate that the SRI, FLX, may induce sterile FM inflammation during pregnancy through activation of the p38 MAPK pathway, and in the absence of apoptosis and senescence. These findings may better inform clinicians and patients as they weigh the risks and benefits of SRI antidepressant treatment during pregnancy.


Subject(s)
Fetal Membranes, Premature Rupture , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Premature Birth , Pregnancy , Humans , Infant, Newborn , Female , Fluoxetine/adverse effects , Fluoxetine/metabolism , Selective Serotonin Reuptake Inhibitors/adverse effects , p38 Mitogen-Activated Protein Kinases/metabolism , Interleukin-6/metabolism , Premature Birth/metabolism , Extraembryonic Membranes/metabolism , Antidepressive Agents/metabolism , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...