Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 170: 115336, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31841771

ABSTRACT

Bioretention systems are efficient at removing particulates, metals, and hydrocarbons from stormwater runoff. However, managing dissolved nitrogen (N) species (dissolved organic N, NH4+, NO2-, NO3-) is a challenge for these systems. This paper reports the results of a long-term field study comparing N removal of: 1) a modified bioretention system that included an internal water storage zone containing wood chips to promote denitrification and 2) a conventional bioretention system. The systems were studied, without and with plants, under varying hydraulic loading rates (HLRs) and antecedent dry conditions (ADCs). Both bioretention designs were efficient at removing NH4+ (83% modified, 74% conventional), while removal of NOx (NO2--N + NO3--N) was significantly higher in the modified system (81% modified, 29% conventional). Results show that the addition of an internal water storage zone promotes denitrification, resulting in lower effluent TN concentrations (<0.75 mg/L modified, ∼1.60 mg/L conventional). The lowest HLR studied, 4.1 cm/h, provided the longest hydraulic retention time in the internal water storage zone (∼3 h) and had the greatest TN removal efficiency (90% modified, 59% conventional). In contrast to prior short-term studies, ADCs between 0 and 13 days did not significantly affect DOC export or TN removal. A short-term study with Florida friendly vegetation indicated that TN removal performance was enhanced in the conventional bioretention system. This field study provides promising results for improving dissolved N removal by modifying bioretention systems to include an internal water storage zone containing wood chips.


Subject(s)
Nitrogen , Water Purification , Denitrification , Florida , Rain
2.
Water Res ; 61: 191-9, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24922353

ABSTRACT

Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions.


Subject(s)
Denitrification , Nitrates/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Bioreactors , Nitrogen/chemistry , Solid Waste , Sulfur/chemistry , Waste Disposal, Fluid/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...