Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Front Oncol ; 13: 1199741, 2023.
Article in English | MEDLINE | ID: mdl-37469403

ABSTRACT

Background: Next-generation sequencing (NGS), including whole genome sequencing (WGS) and whole exome sequencing (WES), is increasingly being used for clinic care. While NGS data have the potential to be repurposed to support clinical pharmacogenomics (PGx), current computational approaches have not been widely validated using clinical data. In this study, we assessed the accuracy of the Aldy computational method to extract PGx genotypes from WGS and WES data for 14 and 13 major pharmacogenes, respectively. Methods: Germline DNA was isolated from whole blood samples collected for 264 patients seen at our institutional molecular solid tumor board. DNA was used for panel-based genotyping within our institutional Clinical Laboratory Improvement Amendments- (CLIA-) certified PGx laboratory. DNA was also sent to other CLIA-certified commercial laboratories for clinical WGS or WES. Aldy v3.3 and v4.4 were used to extract PGx genotypes from these NGS data, and results were compared to the panel-based genotyping reference standard that contained 45 star allele-defining variants within CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP4F2, DPYD, G6PD, NUDT15, SLCO1B1, TPMT, and VKORC1. Results: Mean WGS read depth was >30x for all variant regions except for G6PD (average read depth was 29 reads), and mean WES read depth was >30x for all variant regions. For 94 patients with WGS, Aldy v3.3 diplotype calls were concordant with those from the genotyping reference standard in 99.5% of cases when excluding diplotypes with additional major star alleles not tested by targeted genotyping, ambiguous phasing, and CYP2D6 hybrid alleles. Aldy v3.3 identified 15 additional clinically actionable star alleles not covered by genotyping within CYP2B6, CYP2C19, DPYD, SLCO1B1, and NUDT15. Within the WGS cohort, Aldy v4.4 diplotype calls were concordant with those from genotyping in 99.7% of cases. When excluding patients with CYP2D6 copy number variation, all Aldy v4.4 diplotype calls except for one CYP3A4 diplotype call were concordant with genotyping for 161 patients in the WES cohort. Conclusion: Aldy v3.3 and v4.4 called diplotypes for major pharmacogenes from clinical WES and WGS data with >99% accuracy. These findings support the use of Aldy to repurpose clinical NGS data to inform clinical PGx.

2.
Mol Genet Metab ; 139(3): 107628, 2023 07.
Article in English | MEDLINE | ID: mdl-37354891

ABSTRACT

A 6-yr-old female orangutan presented with a history of dark urine that turned brown upon standing since birth. Repeated routine urinalysis and urine culture were unremarkable. Urine organic acid analysis showed elevation in homogentisic acid consistent with alkaptonuria. Sequence analysis identified a homozygous missense variant, c.1081G>A (p.Gly361Arg), of the homogentisate 1,2-dioxygenase (HGD) gene. Familial studies, molecular modeling, and comparison to human variant databases support this variant as the underlying cause of alkaptonuria in this orangutan. This is the first report of molecular confirmation of alkaptonuria in a nonhuman primate.


Subject(s)
Alkaptonuria , Pongo abelii , Animals , Humans , Female , Alkaptonuria/diagnosis , Alkaptonuria/genetics , Pongo abelii/genetics , Homogentisic Acid , Mutation, Missense , Homozygote
3.
J Mol Diagn ; 25(9): 655-664, 2023 09.
Article in English | MEDLINE | ID: mdl-37354993

ABSTRACT

Pharmacogenetic testing for CYP3A4 is increasingly provided by clinical and research laboratories; however, only a limited number of quality control and reference materials are currently available for many of the CYP3A4 variants included in clinical tests. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program (GeT-RM), in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Institute for Medical Research, has characterized 30 DNA samples derived from Coriell cell lines for CYP3A4. Samples were distributed to five volunteer laboratories for genotyping using a variety of commercially available and laboratory-developed tests. Sanger and next-generation sequencing were also utilized by some of the laboratories. Whole-genome sequencing data from the 1000 Genomes Projects were utilized to inform genotype. Twenty CYP3A4 alleles were identified in the 30 samples characterized for CYP3A4: CYP3A4∗4, ∗5, ∗6, ∗7, ∗8, ∗9, ∗10, ∗11, ∗12, ∗15, ∗16, ∗18, ∗19, ∗20, ∗21, ∗22, ∗23, ∗24, ∗35, and a novel allele, CYP3A4∗38. Nineteen additional samples with preexisting data for CYP3A4 or CYP3A5 were re-analyzed to generate comprehensive reference material panels for these genes. These publicly available and well-characterized materials can be used to support the quality assurance and quality control programs of clinical laboratories performing clinical pharmacogenetic testing.


Subject(s)
Cytochrome P-450 CYP3A , Genetic Testing , Humans , Cytochrome P-450 CYP3A/genetics , Alleles , Genotype , DNA/genetics
4.
J Mol Diagn ; 24(10): 1079-1088, 2022 10.
Article in English | MEDLINE | ID: mdl-35931342

ABSTRACT

Pharmacogenetic testing is increasingly provided by clinical and research laboratories; however, only a limited number of quality control and reference materials are currently available for many of the TPMT and NUDT15 variants included in clinical tests. To address this need, the Division of Laboratory Systems, Centers for Disease Control and Prevention-based Genetic Testing Reference Material (GeT-RM) coordination program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Institute for Medical Research, has characterized 19 DNA samples derived from Coriell cell lines. DNA samples were distributed to four volunteer testing laboratories for genotyping using a variety of commercially available and laboratory developed tests and/or Sanger sequencing. Of the 12 samples characterized for TPMT, newly identified variants include TPMT∗2, ∗6, ∗12, ∗16, ∗21, ∗24, ∗32, ∗33, and ∗40; for the 7 NUDT15 reference material samples, newly identified variants are NUDT15∗2, ∗3, ∗4, ∗5, ∗6, and ∗9. In addition, a novel haplotype, TPMT∗46, was identified in this study. Preexisting data on an additional 11 Coriell samples, as well as some supplemental testing, were used to create comprehensive reference material panels for TPMT and NUDT15. These publicly available and well-characterized materials can be used to support the quality assurance and quality control programs of clinical laboratories performing clinical pharmacogenetic testing.


Subject(s)
Genetic Testing , Methyltransferases/genetics , Pharmacogenetics , Pyrophosphatases/genetics , Alleles , DNA/genetics , Haplotypes , Humans
5.
J Mol Diagn ; 24(6): 576-585, 2022 06.
Article in English | MEDLINE | ID: mdl-35452844

ABSTRACT

Germline whole exome sequencing from molecular tumor boards has the potential to be repurposed to support clinical pharmacogenomics. However, accurately calling pharmacogenomics-relevant genotypes from exome sequencing data remains challenging. Accordingly, this study assessed the analytical validity of the computational tool, Aldy, in calling pharmacogenomics-relevant genotypes from exome sequencing data for 13 major pharmacogenes. Germline DNA from whole blood was obtained for 164 subjects seen at an institutional molecular solid tumor board. All subjects had whole exome sequencing from Ashion Analytics and panel-based genotyping from an institutional pharmacogenomics laboratory. Aldy version 3.3 was operationalized on the LifeOmic Precision Health Cloud with copy number fixed to two copies per gene. Aldy results were compared with those from genotyping for 56 star allele-defining variants within CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP4F2, DPYD, G6PD, NUDT15, SLCO1B1, and TPMT. Read depth was >100× for all variants except CYP3A4∗22. For 75 subjects in the validation cohort, all 3393 Aldy variant calls were concordant with genotyping. Aldy calls for 736 diplotypes containing alleles assessed by both platforms were also concordant. Aldy identified additional star alleles not covered by targeted genotyping for 139 diplotypes. Aldy accurately called variants and diplotypes for 13 major pharmacogenes, except for CYP2D6 variants involving copy number variations, thus allowing repurposing of whole exome sequencing to support clinical pharmacogenomics.


Subject(s)
Cytochrome P-450 CYP2D6 , Pharmacogenetics , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP3A/genetics , DNA Copy Number Variations/genetics , Genotype , High-Throughput Nucleotide Sequencing , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Pharmacogenetics/methods , Exome Sequencing
6.
J Mol Diagn ; 23(8): 952-958, 2021 08.
Article in English | MEDLINE | ID: mdl-34020041

ABSTRACT

Pharmacogenetic testing is increasingly available from clinical and research laboratories. However, only a limited number of quality control and other reference materials are currently available for many of the variants that are tested. The Association for Molecular Pathology Pharmacogenetic Work Group has published a series of papers recommending alleles for inclusion in clinical testing. Several of the alleles were not considered for tier 1 because of a lack of reference materials. To address this need, the Division of Laboratory Systems, Centers for Disease Control and Prevention-based Genetic Testing Reference Material (GeT-RM) program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Institute for Medical Research, has characterized 18 DNA samples derived from Coriell cell lines. DNA samples were distributed to five volunteer testing laboratories for genotyping using three commercially available and laboratory developed tests. Several tier 2 variants, including CYP2C9∗13, CYP2C19∗35, the CYP2C cluster variant (rs12777823), two variants in VKORC1 (rs61742245 and rs72547529) related to warfarin resistance, and two variants in GGCX (rs12714145 and rs11676382) related to clotting factor activation, were identified among these samples. These publicly available materials complement the pharmacogenetic reference materials previously characterized by the GeT-RM program and will support the quality assurance and quality control programs of clinical laboratories that perform pharmacogenetic testing.


Subject(s)
Carboxy-Lyases/genetics , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 Enzyme System/genetics , Pharmacogenetics , Pharmacogenomic Variants , Vitamin K Epoxide Reductases/genetics , Alleles , Genotype , Genotyping Techniques , Humans , Pharmacogenetics/methods , Pharmacogenomic Testing
7.
Clin Transl Sci ; 14(2): 497-501, 2021 03.
Article in English | MEDLINE | ID: mdl-32702149

ABSTRACT

Patients in the pediatric intensive care unit are exposed to multiple medications and are at high risk for adverse drug reactions. Pharmacogenomic (PGx) testing could help decrease their risk of adverse reactions. Although whole blood is preferred for PGx testing, blood volume in this population is often limited. However, for patients on mechanical ventilation, tracheal secretions are abundant, frequently suctioned, and discarded. Thus, the aim of this pilot study was to determine if tracheal aspirates could be used as a source of human genomic DNA for PGx testing. We successfully extracted DNA from tracheal secretions of all 23 patients in the study. The samples were successfully genotyped for 10 clinically actionable single nucleotide variants across 3 cytochrome P450 genes (CYP2D6, CYP2C19, and CYP3A5). Using DNA from whole blood samples in 11 of the patients, we confirmed the accuracy of the genotyping with 100% concordance. Therefore, our results support the use of tracheal aspirates from mechanically ventilated children as an adequate biospecimen for clinical genetic testing.


Subject(s)
Bodily Secretions/chemistry , Drug-Related Side Effects and Adverse Reactions/prevention & control , Genotyping Techniques/methods , Pharmacogenomic Testing/methods , Trachea/metabolism , Adolescent , Child , DNA/analysis , Drug-Related Side Effects and Adverse Reactions/genetics , Feasibility Studies , Female , Humans , Infant , Intensive Care Units, Pediatric , Male , Pharmacogenomic Variants , Pilot Projects , Respiration, Artificial
8.
J Mol Diagn ; 23(1): 103-110, 2021 01.
Article in English | MEDLINE | ID: mdl-33197628

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive disorder predominately caused by bi-allelic loss of the SMN1 gene. Increased copies of SMN2, a low functioning nearly identical paralog, are associated with a less severe phenotype. SMA was recently recommended for inclusion in newborn screening. Clinical laboratories must accurately measure SMN1 and SMN2 copy number to identify SMA patients and carriers, and to identify individuals likely to benefit from therapeutic interventions. Having publicly available and appropriately characterized reference materials with various combinations of SMN1 and SMN2 copy number variants is critical to assure accurate SMA clinical testing. To address this need, the CDC-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and the Coriell Institute for Medical Research, has characterized 15 SMA reference materials derived from publicly available cell lines. DNA samples were distributed to four volunteer testing laboratories for genotyping using three different methods. The characterized samples had zero to four copies of SMN1 and zero to five copies SMN2. The samples also contained clinically important allele combinations (eg, zero copies SMN1, three copies SMN2), and several had markers indicative of an SMA carrier. These and other reference materials characterized by the Genetic Testing Reference Materials Coordination Program are available from the Coriell Institute and are proposed to support the quality of clinical laboratory testing.


Subject(s)
Genetic Carrier Screening/methods , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Alleles , Cell Line , DNA Copy Number Variations , Gene Dosage , Genetic Counseling/methods , Genotyping Techniques/methods , Humans , Infant, Newborn , Neonatal Screening/methods , Phenotype , Real-Time Polymerase Chain Reaction/methods , Survival of Motor Neuron 2 Protein/genetics
9.
Am J Med Genet A ; 182(11): 2501-2507, 2020 11.
Article in English | MEDLINE | ID: mdl-32869452

ABSTRACT

EVEN-PLUS syndrome is a rare condition characterized by its involvement of the Epiphyses, Vertebrae, Ears, and Nose, PLUS other associated findings. We report here the fifth case of EVEN-PLUS syndrome with novel variants c.818 T > G (p.L273X) and c.955C > T (p.L319F) in the HSPA9 gene identified through whole-exome sequencing. The patient is the first male known to be affected and presented with additional features not previously described with EVEN-PLUS syndrome. These features include agenesis of the septum pellucidum, a short chest and sternum, 13 pairs of ribs, a single hemivertebra, laterally displaced nipples, hydronephrosis, unilateral cryptorchidism, unilateral single palmar crease, bilateral clubfoot, and hypotonia. qPCR analysis provides supporting evidence for a nonsense-mediated decay mechanism for the HSPA9 truncating variant. In silico 3D modeling supports the pathogenicity of the c.955C > T (p.L319F) missense variant. The study presented here further describes the syndrome and broadens its mutational and phenotypic spectrum. Our study also lends support to HSPA9 variants as the underlying etiology of EVEN-PLUS syndrome and ultimately provides a better understanding of the molecular basis of the condition.


Subject(s)
HSP70 Heat-Shock Proteins/genetics , Mitochondrial Proteins/genetics , Musculoskeletal Abnormalities/genetics , Mutation, Missense , Septum Pellucidum/pathology , Clubfoot/complications , Cryptorchidism/complications , Exome , Genetic Association Studies , Genetic Variation , Humans , Hydronephrosis/complications , Imaging, Three-Dimensional , Infant , Karyotyping , Male , Muscle Hypotonia/complications , Mutation , Phenotype , RNA, Messenger/metabolism , Ribs/abnormalities , Septum Pellucidum/abnormalities , Sternum/abnormalities , Syndrome , Exome Sequencing
10.
Am J Med Genet A ; 179(12): 2357-2364, 2019 12.
Article in English | MEDLINE | ID: mdl-31512387

ABSTRACT

Coffin-Lowry syndrome (CLS) is a rare X-linked disorder characterized by moderate to severe intellectual disability, hypotonia, craniofacial features, tapering digits, short stature, and skeletal deformities. Using whole exome sequencing and high-resolution targeted comparative genomic hybridization array analysis, we identified a novel microduplication encompassing exons five through nine of RPS6KA3 in three full brothers. Each brother presented with intellectual disability and clinical and radiographic features consistent with CLS. qRT-PCR analyses performed on mRNA from the peripheral blood of the three siblings revealed a marked reduction of RPS6KA3 levels suggesting a loss-of-function mechanism. PCR analysis of the patients' cDNA detected a band greater than expected for an exon 4-10 amplicon, suggesting this was likely a direct duplication that lies between exons 4 through 10, which was later confirmed by Sanger sequencing. This microduplication is only the third intragenic duplication of RPS6KA3, and the second and smallest reported to date thought to cause CLS. Our study further supports the clinical utility of methods such as next-generation sequencing and high-resolution genomic arrays to detect small intragenic duplications. These methods, coupled with expression studies and cDNA structural analysis have the capacity to confirm the diagnosis of CLS in these rare cases.


Subject(s)
Chromosome Duplication , Coffin-Lowry Syndrome/diagnosis , Coffin-Lowry Syndrome/genetics , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Siblings , Child , Facies , Genetic Association Studies , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Pedigree , Phenotype
11.
Am J Physiol Heart Circ Physiol ; 315(2): H375-H388, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29677462

ABSTRACT

Apamin-sensitive small-conductance Ca2+-activated K+ (SK) current ( IKAS) is encoded by Ca2+-activated K+ channel subfamily N ( KCNN) genes. IKAS importantly contributes to cardiac repolarization in conditions associated with reduced repolarization reserve. To test the hypothesis that IKAS inhibition contributes to drug-induced long QT syndrome (diLQTS), we screened for KCNN variants among patients with diLQTS, determined the properties of heterologously expressed wild-type (WT) and variant KCNN channels, and determined if the 5-HT3 receptor antagonist ondansetron blocks IKAS. We searched 2,306,335 records in the Indiana Network for Patient Care and found 11 patients with diLQTS who had DNA available in the Indiana Biobank. DNA sequencing discovered a heterozygous KCNN2 variant (p.F503L) in a 52-yr-old woman presenting with corrected QT interval prolongation at baseline (473 ms) and further corrected QT interval lengthening (601 ms) after oral administration of ondansetron. That patient was also heterozygous for the p.S38G and p.P2835S variants of the QT-controlling genes KCNE1 and ankyrin 2, respectively. Patch-clamp experiments revealed that the p.F503L KCNN2 variant heterologously expressed in human embryonic kidney (HEK)-293 cells augmented Ca2+ sensitivity, increasing IKAS density. The fraction of total F503L-KCNN2 protein retained in the membrane was higher than that of WT KCNN2 protein. Ondansetron at nanomolar concentrations inhibited WT and p.F503L SK2 channels expressed in HEK-293 cells as well as native SK channels in ventricular cardiomyocytes. Ondansetron-induced IKAS inhibition was also demonstrated in Langendorff-perfused murine hearts. In conclusion, the heterozygous p.F503L KCNN2 variant increases Ca2+ sensitivity and IKAS density in transfected HEK-293 cells. Ondansetron at therapeutic (i.e., nanomolar) concentrations is a potent IKAS blocker. NEW & NOTEWORTHY We showed that ondansetron, a 5-HT3 receptor antagonist, blocks small-conductance Ca2+-activated K+ (SK) current. Ondansetron may be useful in controlling arrhythmias in which increased SK current is a likely contributor. However, its SK-blocking effects may also facilitate the development of drug-induced long QT syndrome.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Long QT Syndrome/drug therapy , Ondansetron/pharmacology , Potassium Channel Blockers/pharmacology , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Animals , Anti-Arrhythmia Agents/therapeutic use , Calcium/metabolism , Cells, Cultured , Female , HEK293 Cells , Humans , Long QT Syndrome/genetics , Mice , Mice, Inbred C57BL , Middle Aged , Mutation, Missense , Ondansetron/therapeutic use , Potassium Channel Blockers/therapeutic use , Small-Conductance Calcium-Activated Potassium Channels/genetics , Small-Conductance Calcium-Activated Potassium Channels/metabolism
12.
Sci Rep ; 8(1): 4350, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29531232

ABSTRACT

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disorder that may lead to sudden death and can affect humans and other primates. In 2012, the alpha male bonobo of the Milwaukee County Zoo died suddenly and histologic evaluation found features of ARVC. This study sought to discover a possible genetic cause for ARVC in this individual. We sequenced our subject's DNA to search for deleterious variants in genes involved in cardiovascular disorders. Variants found were annotated according to the human genome, following currently available classification used for human diseases. Sequencing from the DNA of an unrelated unaffected bonobo was also used for prediction of pathogenicity. Twenty-four variants of uncertain clinical significance (VUSs) but no pathogenic variants were found in the proband studied. Further familial, functional, and bonobo population studies are needed to determine if any of the VUSs or a combination of the VUSs found may be associated with the clinical findings. Future genotype-phenotype establishment will be beneficial for the appropriate care of the captive zoo bonobo population world-wide as well as conservation of the bobono species in its native habitat.


Subject(s)
Ape Diseases/genetics , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/veterinary , Genetic Testing/methods , Pan paniscus/genetics , Animals , Databases, Genetic , Death, Sudden, Cardiac/veterinary , Female , Genome, Human , Genomic Structural Variation , Humans , Male , Myocardium/pathology
13.
Front Cardiovasc Med ; 4: 11, 2017.
Article in English | MEDLINE | ID: mdl-28361054

ABSTRACT

The development of high-throughput technologies such as next-generation sequencing (NGS) has allowed for thousands of DNA loci to be interrogated simultaneously in a fast and economical method for the detection of clinically deleterious variants. Whenever a clinical diagnosis is known, a targeted NGS approach involving the use of disease-specific gene panels can be employed. This approach is often valuable as it allows for a more specific and clinically relevant interpretation of results. Here, we describe the customization, validation, and utilization of a commercially available targeted enrichment platform for the scalability of clinical diagnostic cardiovascular genetic tests, including the design of the gene panels, the technical parameters for the quality assurance and quality control, the customization of the bioinformatics pipeline, and the post-bioinformatics analysis procedures. Regions of poor base coverage were detected and targeted by Sanger sequencing as needed. All panels were successfully validated using genotype-known DNA samples either commercially available or from research subjects previously tested in outside clinical laboratories. In our experience, utilizing several of the sub-panels in a clinical setting with 33 real-life cardiovascular patients, we found that 20% of tests requested were reported to have at least one pathogenic or likely pathogenic variant that could explain the patient phenotype. For each of these patients, the positive results may aid the clinical team and the patients in best developing a disease management plan and in identifying relatives at risk.

14.
Hum Mol Genet ; 26(1): 33-43, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28013292

ABSTRACT

We performed whole exome sequencing in individuals from a family with autosomal dominant gastropathy resembling Ménétrier disease, a premalignant gastric disorder with epithelial hyperplasia and enhanced EGFR signalling. Ménétrier disease is believed to be an acquired disorder, but its aetiology is unknown. In affected members, we found a missense p.V742G variant in MIB2, a gene regulating NOTCH signalling that has not been previously linked to human diseases. The variant segregated with the disease in the pedigree, affected a highly conserved amino acid residue, and was predicted to be deleterious although it was found with a low frequency in control individuals. The purified protein carrying the p.V742G variant showed reduced ubiquitination activity in vitro and white blood cells from affected individuals exhibited significant reductions of HES1 and NOTCH3 expression reflecting alteration of NOTCH signalling. Because mutations of MIB1, the homolog of MIB2, have been found in patients with left ventricle non-compaction (LVNC), we investigated members of our family with Ménétrier-like disease for this cardiac abnormality. Asymptomatic left ventricular hypertrabeculation, the mildest end of the LVNC spectrum, was detected in two members carrying the MIB2 variant. Finally, we identified an additional MIB2 variant (p.V984L) affecting protein stability in an unrelated isolated case with LVNC. Expression of both MIB2 variants affected NOTCH signalling, proliferation and apoptosis in primary rat cardiomyocytes.In conclusion, we report the first example of left ventricular hypertrabeculation/LVNC with germline MIB2 variants resulting in altered NOTCH signalling that might be associated with a gastropathy clinically overlapping with Ménétrier disease.


Subject(s)
Cardiomyopathies/pathology , Gastritis, Hypertrophic/pathology , Mutation, Missense/genetics , Receptors, Notch/metabolism , Stomach Diseases/pathology , Ubiquitin-Protein Ligases/genetics , Ventricular Dysfunction, Left/pathology , Animals , Animals, Newborn , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Case-Control Studies , Cells, Cultured , Exome/genetics , Female , Gastritis, Hypertrophic/etiology , Gastritis, Hypertrophic/metabolism , Gene Expression Regulation , Humans , Male , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Pedigree , Phenotype , Rats , Receptors, Notch/genetics , Signal Transduction , Stomach Diseases/etiology , Stomach Diseases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism
15.
Sci Rep ; 6: 38776, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27996019

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive disorder characterized by the accumulation of sticky and heavy mucus that can damage several organs. CF shows variable expressivity in affected individuals, but it typically causes respiratory and digestive complications as well as congenital bilateral absence of the vas deferens in males. Individuals with classic CF usually have variants that produce a defective protein from both alleles of the CFTR gene. Individuals with other variants may present with classic, non-classic, or milder forms of CF due to lower levels of functional CFTR protein. This article reports the genetic analysis of a female with features of asthma and mild or non-classic CF. CFTR sequencing demonstrated that she is a carrier for a maternally derived 5T/12TG variant. Deletion/duplication analysis by multiplex ligation-dependent probe amplification (MLPA) showed the presence of an intragenic paternally derived duplication involving exons 7-11 of the CFTR gene. This duplication is predicted to result in the production of a truncated CFTR protein lacking the terminal part of the nucleotide-binding domain 1 (NBD1) and thus is likely to be a non-functioning allele. The combination of this large intragenic duplication and 5T/12TG is the probable cause of the mild or non-classic CF features in this individual.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Mutagenesis, Insertional , Adult , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Female , Humans , Protein Domains
16.
BMC Microbiol ; 16(1): 262, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27821046

ABSTRACT

BACKGROUND: Heterogeneity and niche adaptation in bacterial biofilm involve changes to the genetic makeup of the bacteria and gene expression control. We hypothesized that i) spontaneous mutations in the flhD operon can either increase or decrease motility and that ii) the resulting motility heterogeneity in the biofilm might lead to a long-term increase in biofilm biomass. RESULTS: We allowed the highly motile E. coli K-12 strain MC1000 to form seven- and fourteen-day old biofilm, from which we recovered reduced motility isolates at a substantially greater frequency (5.4 %) than from a similar experiment with planktonic bacteria (0.1 %). Biofilms formed exclusively by MC1000 degraded after 2 weeks. In contrast, biofilms initiated with a 1:1 ratio of MC1000 and its isogenic flhD::kn mutant remained intact at 4 weeks and the two strains remained in equilibrium for at least two weeks. These data imply that an 'optimal' biofilm may contain a mixture of motile and non-motile bacteria. Twenty-eight of the non-motile MC1000 isolates contained an IS1 element in proximity to the translational start of FlhD or within the open reading frames for FlhD or FlhC. Two isolates had an IS2 and one isolate had an IS5 in the open reading frame for FlhD. An additional three isolates contained deletions that included the RNA polymerase binding site, five isolates contained point mutations and small deletions in the open reading frame for FlhC. The locations of all these mutations are consistent with the lack of motility and further downstream within the flhD operon than previously published IS elements that increased motility. We believe that the location of the mutation within the flhD operon determines whether the effect on motility is positive or negative. To test the second part of our hypothesis where motility heterogeneity in a biofilm may lead to a long-term increase in biofilm biomass, we quantified biofilm biomass by MC1000, MC1000 flhD::kn, and mixtures of the two strains at ratios of 1:1, 10:1, and 1:10. After 3 weeks, biofilm of the mixed cultures contained up to five times more biomass than biofilm of each of the individual strains. CONCLUSION: Mutations in the flhD operon can exert positive or negative effects on motility, depending on the site of the mutation. We believe that this is a mechanism to generate motility heterogeneity within E. coli biofilm, which may help to maintain biofilm biomass over extended periods of time.


Subject(s)
Biofilms , Escherichia coli Proteins/genetics , Escherichia coli/physiology , Gene Expression Regulation, Bacterial , Trans-Activators/genetics , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Mutation , Operon , Trans-Activators/metabolism
18.
PLoS One ; 10(12): e0143588, 2015.
Article in English | MEDLINE | ID: mdl-26636822

ABSTRACT

BACKGROUND: The etiology of conduction disturbances necessitating permanent pacemaker (PPM) implantation is often unknown, although familial aggregation of PPM (faPPM) suggests a possible genetic basis. We developed a pan-cardiovascular next generation sequencing (NGS) panel to genetically characterize a selected cohort of faPPM. MATERIALS AND METHODS: We designed and validated a custom NGS panel targeting the coding and splicing regions of 246 genes with involvement in cardiac pathogenicity. We enrolled 112 PPM patients and selected nine (8%) with faPPM to be analyzed by NGS. RESULTS: Our NGS panel covers 95% of the intended target with an average of 229x read depth at a minimum of 15-fold depth, reaching a SNP true positive rate of 98%. The faPPM patients presented with isolated cardiac conduction disease (ICCD) or sick sinus syndrome (SSS) without overt structural heart disease or identifiable secondary etiology. Three patients (33.3%) had heterozygous deleterious variants previously reported in autosomal dominant cardiac diseases including CCD: LDB3 (p.D117N) and TRPM4 (p.G844D) variants in patient 4; TRPM4 (p.G844D) and ABCC9 (p.V734I) variants in patient 6; and SCN5A (p.T220I) and APOB (p.R3527Q) variants in patient 7. CONCLUSION: FaPPM occurred in 8% of our PPM clinic population. The employment of massive parallel sequencing for a large selected panel of cardiovascular genes identified a high percentage (33.3%) of the faPPM patients with deleterious variants previously reported in autosomal dominant cardiac diseases, suggesting that genetic variants may play a role in faPPM.


Subject(s)
Brugada Syndrome/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Sick Sinus Syndrome/genetics , Adult , Aged , Aged, 80 and over , Brugada Syndrome/therapy , Cardiac Conduction System Disease , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Pacemaker, Artificial , Sick Sinus Syndrome/therapy
19.
Meat Sci ; 96(1): 165-71, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23896151

ABSTRACT

Bacterial infection by Escherichia coli O157:H7 through the consumption of beef meat or meat products is an ongoing problem, in part because bacteria develop resistances towards chemicals aimed at killing them. In an approach that uses bacterial nutrients to manipulate bacteria into behaviors or cellular phenotypes less harmful to humans, we screened a library of 95 carbon and 95 nitrogen sources for their effect on E. coli growth, cell division, and biofilm formation. In the initial screening experiment using the Phenotype MicroArray(TM) technology from BioLog (Hayward, CA), we narrowed the 190 starting nutrients down to eight which were consecutively tested as supplements in liquid beef broth medium. Acetoacetic acid (AAA) and ß-phenylethylamine (PEA) performed best in this experiment. On beef meat pieces, PEA reduced the bacterial cell count by 90% after incubation of the PEA treated and E. coli contaminated meat pieces at 10°C for one week.


Subject(s)
Escherichia coli O157/drug effects , Food Contamination/prevention & control , Meat/microbiology , Phenethylamines/administration & dosage , Acetoacetates/administration & dosage , Animals , Asparagine/administration & dosage , Caprylates/administration & dosage , Cattle , Colony Count, Microbial , Consumer Product Safety , Escherichia coli O157/growth & development , Food Handling , Food Microbiology , Hexosamines/administration & dosage , Inhibitory Concentration 50 , Thymine/administration & dosage
20.
FEMS Microbiol Lett ; 344(2): 95-103, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23651469

ABSTRACT

Current antibiotics continue to lose effectiveness for infectious diseases, especially in cases where the bacteria from a biofilm. This review article summarizes control mechanisms for bacterial biofilm, with an emphasis on the modification of signal transduction pathways, such as quorum sensing and two-component signaling, by externally added metabolic intermediates. As a link between central metabolism and signal transduction, we discuss the activation of two-component response regulators by activated acetate intermediates in response to signals from the environment. These signals constitute 'nutrients' for the bacteria in most cases. Depending on the identity of the nutrient, biofilm amounts may be reduced. The nutrient may then be used for the development of both novel prevention and treatment options for biofilm-associated infectious diseases.


Subject(s)
Acetates/metabolism , Biofilms , Escherichia coli Infections/microbiology , Escherichia coli/physiology , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Infections/drug therapy , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...