Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 862: 160862, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36521613

ABSTRACT

Uranium dioxide (UO2) and metaschoepite (UO3•nH2O) particles have been identified as contaminants at nuclear sites. Understanding their behavior and impact is crucial for safe management of radioactively contaminated land and to fully understand U biogeochemistry. The Savannah River Site (SRS) (South Carolina, USA), is one such contaminated site, following historical releases of U-containing wastes to the vadose zone. Here, we present an insight into the behavior of these two particle types under dynamic conditions representative of the SRS, using field lysimeters (15 cm D x 72 cm L). Discrete horizons containing the different particle types were placed at two depths in each lysimeter (25 cm and 50 cm) and exposed to ambient rainfall for 1 year, with an aim of understanding the impact of dynamic, shallow subsurface conditions on U particle behavior and U migration. The dissolution and migration of U from the particle sources and the speciation of U throughout the lysimeters was assessed after 1 year using a combination of sediment digests, sequential extractions, and bulk and µ-focus X-ray spectroscopy. In the UO2 lysimeter, oxidative dissolution of UO2 and subsequent migration of U was observed over 1-2 cm in the direction of waterflow and against it. Sequential extractions of the UO2 sources suggest they were significantly altered over 1 year. The metaschoepite particles also showed significant dissolution with marginally enhanced U migration (several cm) from the sources. However, in both particle systems the released U was quantitively retained in sediment as a range of different U(IV) and U(VI) phases, and no detectable U was measured in the lysimeter effluent. The study provides a useful insight into U particle behavior in representative, real-world conditions relevant to the SRS, and highlights limited U migration from particle sources due to secondary reactions with vadose zone sediments over 1 year.


Subject(s)
Uranium , Water Pollutants, Radioactive , Water Pollutants, Radioactive/analysis , Uranium/analysis , Spectrum Analysis , Rivers , South Carolina , Oxidation-Reduction
2.
Environ Sci Nano ; 9(3): 1076-1090, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35663418

ABSTRACT

Anaerobic nitrate-dependent iron(ii) oxidation is a process common to many bacterial species, which promotes the formation of Fe(iii) minerals that can influence the fate of soil and groundwater pollutants, such as arsenic. Herein, we investigated simultaneous nitrate-dependent Fe(ii) and As(iii) oxidation by Acidovorax sp. strain ST3 with the aim of studying the Fe biominerals formed, their As immobilization capabilities and the metabolic effect on cells. X-ray powder diffraction (XRD) and scanning transmission electron microscopy (STEM) nanodiffraction were applied for biomineral characterization in bulk and at the nanoscale, respectively. NanoSIMS (nanoscale secondary ion mass spectrometry) was used to map the intra and extracellular As and Fe distribution at the single-cell level and to trace metabolically active cells, by incorporation of a 13C-labeled substrate (acetate). Metabolic heterogeneity among bacterial cells was detected, with periplasmic Fe mineral encrustation deleterious to cell metabolism. Interestingly, Fe and As were not co-localized in all cells, indicating delocalized sites of As(iii) and Fe(ii) oxidation. The Fe(iii) minerals lepidocrocite and goethite were identified in XRD, although only lepidocrocite was identified via STEM nanodiffraction. Extracellular amorphous nanoparticles were formed earlier and retained more As(iii/v) than crystalline "flakes" of lepidocrocite, indicating that longer incubation periods promote the formation of more crystalline minerals with lower As retention capabilities. Thus, the addition of nitrate promotes Fe(ii) oxidation and formation of Fe(iii) biominerals by ST3 cells which retain As(iii/v), and although this process was metabolically detrimental to some cells, it warrants further examination as a viable mechanism for As removal in anoxic environments by biostimulation with nitrate.

3.
Front Microbiol ; 12: 640734, 2021.
Article in English | MEDLINE | ID: mdl-33692773

ABSTRACT

Microbial metabolism plays a key role in controlling the fate of toxic groundwater contaminants, such as arsenic. Dissimilatory metal reduction catalyzed by subsurface bacteria can facilitate the mobilization of arsenic via the reductive dissolution of As(V)-bearing Fe(III) mineral assemblages. The mobility of liberated As(V) can then be amplified via reduction to the more soluble As(III) by As(V)-respiring bacteria. This investigation focused on the reductive dissolution of As(V) sorbed onto Fe(III)-(oxyhydr)oxide by model Fe(III)- and As(V)-reducing bacteria, to elucidate the mechanisms underpinning these processes at the single-cell scale. Axenic cultures of Shewanella sp. ANA-3 wild-type (WT) cells [able to respire both Fe(III) and As(V)] were grown using 13C-labeled lactate on an arsenical Fe(III)-(oxyhydr)oxide thin film, and after colonization, the distribution of Fe and As in the solid phase was assessed using nanoscale secondary ion mass spectrometry (NanoSIMS), complemented with aqueous geochemistry analyses. Parallel experiments were conducted using an arrA mutant, able to respire Fe(III) but not As(V). NanoSIMS imaging showed that most metabolically active cells were not in direct contact with the Fe(III) mineral. Flavins were released by both strains, suggesting that these cell-secreted electron shuttles mediated extracellular Fe(III)-(oxyhydr)oxide reduction, but did not facilitate extracellular As(V) reduction, demonstrated by the presence of flavins yet lack of As(III) in the supernatants of the arrA deletion mutant strain. 3D reconstructions of NanoSIMS depth-profiled single cells revealed that As and Fe were associated with the cell surface in the WT cells, whereas for the arrA mutant, only Fe was associated with the biomass. These data were consistent with Shewanella sp. ANA-3 respiring As(V) in a multistep process; first, the reductive dissolution of the Fe(III) mineral released As(V), and once in solution, As(V) was respired by the cells to As(III). As well as highlighting Fe(III) reduction as the primary release mechanism for arsenic, our data also identified unexpected cellular As(III) retention mechanisms that require further investigation.

4.
ACS Omega ; 5(1): 296-303, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31956776

ABSTRACT

The Collaborative Materials Exercise (CMX) is organized by the Nuclear Forensics International Technical Working Group, with the aim of advancing the analytical capabilities of the participating organizations and providing feedback on the best approaches to a nuclear forensic investigation. Here, model nuclear fuel materials from the 5th CMX iteration were analyzed using a NanoSIMS 50L (CAMECA) in order to examine inhomogeneities in the 235U/238U ratio and trace element abundance within individual, micrometer scale particles. Two fuel pellets were manufactured for the exercise and labelled CMX-5A and CMX-5B. These pellets were created using different processing techniques, but both had a target enrichment value of 235U/238U = 0.01. Particles from these pellets were isolated for isotopic and trace element analysis. Fifteen CMX-5A particles and 20 CMX-5B particles were analyzed, with both sample types displaying inhomogeneities in the U isotopic composition at a sub-micrometer scale within individual particles. Typical particle diameters were ∼1.5 to 41 µm for CMX-5A and ∼1 to 61 µm for CMX-5B. The CMX-5A particles were shown to be more isotopically homogeneous, with a mean 235U/238U atom ratio of 0.0130 ± 0.0066. The CMX-5B particles showed a predominantly depleted mean 235U/238U atom ratio of 0.0063 ± 0.0094, which is significantly different to the target enrichment value of the pellet and highlights the potential variation of 235U/238U in U fuel pellets at the micrometer scale. This study details the successful application of the NanoSIMS 50L in a mock nuclear forensic investigation by optimizing high-resolution imaging for uranium isotopics.

5.
Sci Rep ; 9(1): 13702, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31548570

ABSTRACT

Nanospheres of lead (Pb) have recently been identified in zircon (ZrSiO4) with the potential to compromise the veracity of U-Pb age determinations. The key assumption that the determined age is robust against the effects of Pb mobility, as long as Pb is not lost from the zircon during subsequent geological events, is now in question. To determine the effect of nanosphere formation on age determination, and whether analysis of nanospheres can yield additional information about the timing of both zircon growth and nanosphere formation, zircons from the Napier Complex in Enderby Land, East Antarctica, were investigated by high-spatial resolution NanoSIMS (Secondary Ion Mass Spectrometry) mapping. Conventional SIMS analyses with >µm resolution potentially mixes Pb from multiple nanospheres with the zircon host, yielding variable average values and therefore unreliable ages. NanoSIMS analyses were obtained of 207Pb/206Pb in nanospheres a few nanometres in diameter that were resolved from 207Pb/206Pb measurements in the zircon host. We demonstrate that analysis for 207Pb/206Pb in multiple individual Pb nanospheres, along with separate analysis of 207Pb/206Pb in the zircon host, can not only accurately yield the age of zircon crystallization, but also the time of nanosphere formation resulting from Pb mobilization during metamorphism. Model ages for both events can be derived that are correlated due to the limited range of possible solutions that can be satisfied by the measured 207Pb/206Pb ratios of nanospheres and zircon host. For the Napier Complex zircons, this yields a model age of ca 3110 Ma for zircon formation and a late Archean model age of 2610 Ma for the metamorphism that produced the nanospheres. The Nanosphere Model Age (NMA) method constrains both the crystallization age and age of the metamorphism to ~±135 Ma, a significant improvement on errors derived from counting statistics.

6.
Astrobiology ; 14(8): 651-93, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25046549

ABSTRACT

Abstract A conspicuous biomorphic ovoid structure has been discovered in the Nakhla martian meteorite, made of nanocrystalline iron-rich saponitic clay and amorphous material. The ovoid is indigenous to Nakhla and occurs within a late-formed amorphous mesostasis region of rhyolitic composition that is interstitial to two clinopyroxene grains with Al-rich rims, and contains acicular apatite crystals, olivine, sulfides, Ti-rich magnetite, and a new mineral of the rhoenite group. To infer the origin of the ovoid, a large set of analytical tools was employed, including scanning electron microscopy and backscattered electron imaging, wavelength-dispersive X-ray analysis, X-ray mapping, Raman spectroscopy, time-of-flight secondary ion mass spectrometry analysis, high-resolution transmission electron microscope imaging, and atomic force microscope topographic mapping. The concentric wall of the ovoid surrounds an originally hollow volume and exhibits internal layering of contrasting nanotextures but uniform chemical composition, and likely inherited its overall shape from a preexisting vesicle in the mesostasis glass. A final fibrous layer of Fe-rich phases blankets the interior surfaces of the ovoid wall structure. There is evidence that the parent rock of Nakhla has undergone a shock event from a nearby bolide impact that melted the rims of pyroxene and the interstitial matter and initiated an igneous hydrothermal system of rapidly cooling fluids, which were progressively mixed with fluids from the melted permafrost. Sharp temperature gradients were responsible for the crystallization of Al-rich clinopyroxene rims, rhoenite, acicular apatites, and the quenching of the mesostasis glass and the vesicle. During the formation of the ovoid structure, episodic fluid infiltration events resulted in the precipitation of saponite rinds around the vesicle walls, altered pyrrhotite to marcasite, and then isolated the ovoid wall structure from the rest of the system by depositing a layer of iron oxides/hydroxides. Carbonates, halite, and sulfates were deposited last within interstitial spaces and along fractures. Among three plausible competing hypotheses here, this particular abiotic scenario is considered to be the most reasonable explanation for the formation of the ovoid structure in Nakhla, and although compelling evidence for a biotic origin is lacking, it is evident that the martian subsurface contains niche environments where life could develop.


Subject(s)
Mars , Meteoroids , Minerals/analysis , Exobiology , Microscopy, Electron , Spectrum Analysis, Raman
7.
ACS Nano ; 4(5): 2577-84, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20394356

ABSTRACT

Precious metals supported on ferrimagnetic particles have a diverse range of uses in catalysis. However, fabrication using synthetic methods results in potentially high environmental and economic costs. Here we show a novel biotechnological route for the synthesis of a heterogeneous catalyst consisting of reactive palladium nanoparticles arrayed on a nanoscale biomagnetite support. The magnetic support was synthesized at ambient temperature by the Fe(III)-reducing bacterium, Geobacter sulfurreducens , and facilitated ease of recovery of the catalyst with superior performance due to reduced agglomeration (versus conventional colloidal Pd nanoparticles). Surface arrays of palladium nanoparticles were deposited on the nanomagnetite using a simple one-step method without the need to modify the biomineral surface, most likely due to an organic coating priming the surface for Pd adsorption, which was produced by the bacterial culture during the formation of the nanoparticles. A combination of EXAFS and XPS showed the Pd nanoparticles on the magnetite to be predominantly metallic in nature. The Pd(0)-biomagnetite was tested for catalytic activity in the Heck reaction coupling iodobenzene to ethyl acrylate or styrene. Rates of reaction were equal to or superior to those obtained with an equimolar amount of a commercial colloidal palladium catalyst, and near complete conversion to ethyl cinnamate or stilbene was achieved within 90 and 180 min, respectively.


Subject(s)
Engineering/methods , Geobacter/metabolism , Magnetics , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Palladium/chemistry , Acrylates/chemistry , Catalysis , Circular Dichroism , Ferrosoferric Oxide/chemistry , Ferrosoferric Oxide/metabolism , Green Chemistry Technology , Iodobenzenes/chemistry , Styrene/chemistry , X-Ray Absorption Spectroscopy
8.
Rapid Commun Mass Spectrom ; 24(1): 15-20, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19957296

ABSTRACT

In recent years, Au-cluster ions have been successfully used for organic analysis in secondary ion mass spectrometry. Cluster ions, such as Au(2)(+) and Au(3)(+), can produce secondary ion yield enhancements of up to a factor of 300 for high mass organic molecules with minimal sample damage. In this study, the potential for using Au(+), Au(2)(+) and Au(3)(+) primary ions for the analysis of inorganic samples is investigated by analyzing a range of silicate glass standards. Practical secondary ion yields for both Au(2)(+) and Au(3)(+) ions are enhanced relative to those for Au(+), consistent with their increased sputter rates. No elevation in ionization efficiency was found for the cluster primary ions. Relative sensitivity factors for major and trace elements in the standards showed no improvement in quantification with Au(2)(+) and Au(3)(+) ions over the use of Au(+) ions. Higher achievable primary ion currents for Au(+) ions than for Au(2)(+) and Au(3)(+) allow for more precise analyses of elemental abundances within inorganic samples, making them the preferred choice, in contrast to the choice of Au(2)(+) and Au(3)(+) for the analysis of organic samples. The use of delayed secondary ion extraction can also boost secondary ion signals, although there is a loss of overall sensitivity.


Subject(s)
Glass/chemistry , Glass/radiation effects , Gold/chemistry , Silicates/chemistry , Silicates/radiation effects , Spectrometry, Mass, Electrospray Ionization/methods , Gold/radiation effects , Ions , Reproducibility of Results , Sensitivity and Specificity
9.
Rapid Commun Mass Spectrom ; 23(21): 3355-60, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19780063

ABSTRACT

Time-of-flight secondary ion mass spectrometry is a very useful tool for the comprehensive characterization of samples by in situ measurements. A pulsed primary ion beam is used to sputter secondary ions from the surface of a sample and these are then recorded by a time-of-flight mass spectrometer. The parallel detection of all elements leads to very efficient sample usage allowing the comprehensive analysis of sub-micrometre sized samples. An inherent problem is accurate quantification of elemental abundances which mainly stems from the so-called matrix effect. This effect consists of changes in the sputtering and ionization efficiencies of the secondary neutrals and ions due to different sample compositions, different crystal structure or even different crystallographic orientations. Here we present results obtained using C60 molecules as a new primary ion species for inorganic analyses. The results show an improvement in quantification accuracy of elemental abundances, achieving relative errors as small as the certified uncertainties for the analyzed silicate standards. This improvement is probably due to the different sputter mechanism for C60+ primary ions from that for single atomic primary ions such as Ga+, Cs+ or Ar+. The C60+ cluster breaks up on impact, distributing the energy between its constituent carbon atoms. In this way it excavates nano-craters, rather than knocking out single atoms or molecules from the surface via a collision cascade, leading to a more reproducible sputter process and much improved quantification.

10.
Rev Sci Instrum ; 78(5): 055107, 2007 May.
Article in English | MEDLINE | ID: mdl-17552860

ABSTRACT

We present the performance characteristics of a time-of-flight secondary ion mass spectrometer designed for 157 nm laser postionization of sputtered neutrals for high sensitivity elemental and isotopic analyses. The instrument was built with the aim of analyzing rare element abundances in micron to submicron samples such as interstellar grains and cometary dust. Relative sensitivity factors have been determined for secondary ion mass spectrometry which show an exponential dependency against the first ionization potential. This allows elemental abundances to be measured with errors below 25% for most major elements. The accuracy for isotope ratios, where isotopes can be resolved from isobaric interferences, is usually limited only by counting statistics. In laser secondary neutral mass spectrometry, the spatial and temporal overlaps between the laser and sputtered neutral atoms are modeled and predictions of total detection efficiency and isotopic and elemental fractionation are compared with experimental data. Relative sensitivity factors for laser-ionized secondary neutrals from a stainless steel standard are found to vary less than 3% above saturation laser pulse energy enabling more accurate quantification.


Subject(s)
Cosmic Dust/analysis , Lasers , Spectrometry, Mass, Electrospray Ionization/instrumentation , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization/methods
11.
Science ; 314(5806): 1724-8, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17170292

ABSTRACT

Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.


Subject(s)
Carbon Isotopes/analysis , Deuterium/analysis , Isotopes/analysis , Meteoroids , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Hydrogen/analysis , Neon/analysis , Noble Gases/analysis , Spacecraft
12.
Exp Brain Res ; 161(2): 193-200, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15480597

ABSTRACT

During a step, the body enters a state of falling as a foot is lifted from the ground. This has important implications for the control of body trajectory when stepping in different directions. A model has been proposed in which the central nervous system controls body trajectory by a predictive, ballistic "throw" of the body occurring just before the stepping foot leaves the ground. Here we investigate this model and ask how far into the future the body trajectory is predetermined by this initial ballistic throw. We measured body centre-of-mass (CoM) and foot trajectories during two-step sequences involving stepping onto illuminated targets, one for each foot. The targets were varied spatially such that leading foot placement could be dissociated from final CoM position. The results showed that the body throw was altered when stepping in different directions. However, the throw varied only with leading foot placement and not with final CoM position. Thus, provided the leading foot was placed identically, the same throw was used for steps in which body trajectories would later diverge. Furthermore, these trajectories did not diverge while the stepping foot was in the air but occurred after it touched down. The results are consistent with the ballistic stepping model. However, they suggest that the throw is limited in its predictive capacity, being concerned only with where the stepping foot is to be placed rather than final CoM position. This constitutes a one-step-at-a-time strategy that allows the body to be safely "caught" between steps.


Subject(s)
Gait/physiology , Postural Balance/physiology , Biomechanical Phenomena , Foot/innervation , Foot/physiology , Functional Laterality/physiology , Humans , Models, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...