Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 119(51): 12742-55, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26601564

ABSTRACT

Laser-ablated vanadium, niobium, and tantalum atoms were reacted with CH2X2, CHX3, and CX4 (X = F and Cl) molecules in condensing argon, and the products were investigated by matrix isolation infrared spectroscopy. The major reaction products are new CH2-MX2, CHX-MX2, HC-MX3, and XC-MX3 complexes. These reactive species were identified by comparing their matrix infrared spectra with frequencies, intensities, and isotopic shifts from density functional theory calculations. Product structures and energies from these calculations are also presented. Results from previously studied Group 4 and 6 metal reaction products are compared. Little change is found in the calculated metal-carbon bond lengths in the early first row CH2═MF2 methylidene σ(2)π(2) series; however, the methylidyne complexes HC{}MF3 show considerable increase in bond strength for the nominally σ(2)π(1)π(1)(Ti), σ(2)π(2)π(1)(V), and σ(2)π(2)π(2)(Cr) carbon{}metal bonds left to right. The Group 5 HC{}MF3 complexes have only a plane of symmetry whereas the Group 4 and 6 analogues have 3-fold symmetry.

2.
J Phys Chem A ; 118(37): 8198-203, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-24758409

ABSTRACT

The structures of neutral cobalt-doped silicon clusters have been assigned by a combined experimental and theoretical study. Size-selective infrared spectra of neutral Si(n)Co (n = 10-12) clusters are measured using a tunable IR-UV two-color ionization scheme. The experimental infrared spectra are compared with calculated spectra of low-energy structures predicted at the B3P86 level of theory. It is shown that the Si(n)Co (n = 10-12) clusters have endohedral caged structures, where the silicon frameworks prefer double-layered structures encapsulating the Co atom. Electronic structure analysis indicates that the clusters are stabilized by an ionic interaction between the Co dopant atom and the silicon cage due to the charge transfer from the silicon valence sp orbitals to the cobalt 3d orbitals. Strong hybridization between the Co dopant atom and the silicon host quenches the local magnetic moment on the encapsulated Co atom.

3.
Chemphyschem ; 15(2): 328-36, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24402827

ABSTRACT

Cationic silver-doped silicon clusters, Si(n)Ag(+) (n=6-15), are studied using infrared multiple photon dissociation in combination with density functional theory computations. Candidate structures are identified using a basin-hopping global optimizations method. Based on the comparison of experimental and calculated IR spectra for the identified low-energy isomers, structures are assigned. It is found that all investigated clusters have exohedral structures, that is, the Ag atom is located at the surface. This is a surprising result because many transition-metal dopant atoms have been shown to induce the formation of endohedral silicon clusters. The silicon framework of Si(n)Ag(+) (n=7-9) has a pentagonal bipyramidal building block, whereas the larger Si(n)Ag(+) (n=10-12, 14, 15) clusters have trigonal prism-based structures. On comparing the structures of Si(n)Ag(+) with those of Si(n)Cu(+) (for n=6-11) it is found that both Cu and Ag adsorb on a surface site of bare Si(n)(+) clusters. However, the Ag dopant atom takes a lower coordinated site and is more weakly bound to the Si(n)(+) framework than the Cu dopant atom.

4.
J Chem Phys ; 138(19): 194301, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23697412

ABSTRACT

We present a combined experimental and theoretical investigation of small neutral vanadium and manganese doped silicon clusters Si(n)X (n = 6-9, X = V, Mn). These species are studied by infrared multiple photon dissociation and mass spectrometry. Structural identification is achieved by comparison of the experimental data with computed infrared spectra of low-lying isomers using density functional theory at the B3P86∕6-311+G(d) level. The assigned structures of the neutral vanadium and manganese doped silicon clusters are compared with their cationic counterparts. In general, the neutral and cationic Si(n)V(0,+) and Si(n)Mn(0,+) clusters have similar structures, although the position of the capping atoms depends for certain sizes on the charge state. The influence of the charge state on the electronic properties of the clusters is also investigated by analysis of the density of states, the shapes of the molecular orbitals, and NBO charge analysis of the dopant atom.

5.
J Phys Chem A ; 116(48): 11880-7, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23106617

ABSTRACT

The π and C-H insertion complexes (M-η(2)-C(2)H(2) and HM-C≡CH) are identified in the matrix infrared spectra from reactions of laser-ablated Group 6 metal atoms with acetylene. In annealing, the π complex is produced, and it converts to the insertion product during photolysis with no trace of the vinylidene product. This observation is consistent with the considerably higher activation energy to H(2)CCM than that to HM-CCH in the previously proposed reaction path, whereas the three plausible products are in fact energetically comparable. The back-donations in the Group 6 metal π complexes are evidently weaker than those in the Groups 3-5 metal analogues but still stronger than those in the main group and Group 7-10 metal systems. The insertion complexes have bent CMH moieties in contrast with the linear Mn complex.

6.
Chemistry ; 18(49): 15788-93, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23090866

ABSTRACT

We report on the structural, electronic, and magnetic properties of manganese-doped silicon clusters cations, Si(n)Mn(+) with n=6-10, 12-14, and 16, using mass spectrometry and infrared spectroscopy in combination with density functional theory computations. This combined experimental and theoretical study allows several structures to be identified. All the exohedral Si(n)Mn(+) (n=6-10) clusters are found to be substitutive derivatives of the bare Si(n+1)(+) cations, while the endohedral Si(n)Mn(+) (n=12-14 and 16) clusters adopt fullerene-like structures. The hybrid B3P86 functional is shown to be appropriate in predicting the ground electronic states of the clusters and in reproducing their infrared spectra. The clusters turn out to have high magnetic moments localized on Mn. In particular the Mn atoms in the exohedral Si(n)Mn(+) (n=6-10) clusters have local magnetic moments of 4 µ(B) or 6 µ(B) and can be considered as magnetic copies of the silicon atoms. Opposed to other 3d transition-metal dopants, the local magnetic moment of the Mn atom is not completely quenched when encapsulated in a silicon cage.

7.
J Chem Phys ; 136(6): 064301, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22360181

ABSTRACT

Vibrational spectra of neutral silicon clusters Si(n), in the size range of n = 6-10 and for n = 15, have been measured in the gas phase by two fundamentally different IR spectroscopic methods. Silicon clusters composed of 8, 9, and 15 atoms have been studied by IR multiple photon dissociation spectroscopy of a cluster-xenon complex, while clusters containing 6, 7, 9, and 10 atoms have been studied by a tunable IR-UV two-color ionization scheme. Comparison of both methods is possible for the Si(9) cluster. By using density functional theory, an identification of the experimentally observed neutral cluster structures is possible, and the effect of charge on the structure of neutrals and cations, which have been previously studied via IR multiple photon dissociation, can be investigated. Whereas the structures of small clusters are based on bipyramidal motifs, a trigonal prism as central unit is found in larger clusters. Bond weakening due to the loss of an electron leads to a major structural change between neutral and cationic Si(8).

8.
J Chem Phys ; 131(18): 184706, 2009 Nov 14.
Article in English | MEDLINE | ID: mdl-19916622

ABSTRACT

The binding of carbon monoxide to iron, ruthenium, rhenium, and tungsten clusters is studied by means of infrared multiple photon dissociation spectroscopy. The CO stretching mode is used to probe the interaction of the CO molecule with the metal clusters and thereby the activation of the C-O bond. CO is found to adsorb molecularly to atop positions on iron clusters. On ruthenium and rhenium clusters it also binds molecularly. In the case of ruthenium, binding is predominantly to atop sites, however higher coordinated CO binding is also observed for both metals and becomes prevalent for rhenium clusters containing more than nine atoms. Tungsten clusters exhibit a clear size dependence for molecular versus dissociative CO binding. This behavior denotes the crossover to the purely dissociative CO binding on the earlier transition metals such as tantalum.

9.
J Chem Phys ; 131(17): 171105, 2009 Nov 07.
Article in English | MEDLINE | ID: mdl-19894990

ABSTRACT

Tunable far-infrared-vacuum-ultraviolet two color ionization is used to obtain vibrational spectra of neutral silicon clusters in the gas phase. Upon excitation with tunable infrared light prior to irradiation with UV photons we observe strong enhancements in the mass spectrometric signal of specific cluster sizes. This allowed the recording of the infrared absorption spectra of Si(6), Si(7), and Si(10). Structural assignments were made by comparison with calculated linear absorption spectra from quantum chemical theory.

10.
Inorg Chem ; 48(13): 6297-302, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-19402628

ABSTRACT

Laser-ablated Ti, Zr, and Hf atoms react with NF(3), PF(3), or AsF(3) to produce triplet state terminal pnictinidene N/MF(3), P/MF(3), or As/MF(3) molecules, which are trapped in an argon matrix. Products are identified from infrared spectra and comparison to theoretically predicted vibrations. Density functional theory calculations converge to C(3v) symmetry structures for these lowest energy products. The two unpaired electrons in nitrogen 2p, phosphorus 3p, or arsenic 4p orbitals are shared in different small amounts with empty metal nd orbitals leading to very weak degenerate pialpha molecular orbitals based on bonding orbital analysis and spin density calculations. This weak pi bonding interaction with early transition metal group 4 nd orbitals is optimum for Zr with phosphorus 3p orbitals.

11.
J Am Chem Soc ; 131(3): 1115-21, 2009 Jan 28.
Article in English | MEDLINE | ID: mdl-19154175

ABSTRACT

We present gas-phase infrared spectra for small silicon cluster cations possessing between 6 and 21 atoms. Infrared multiple photon dissociation (IR-MPD) of these clusters complexed with a xenon atom is employed to obtain their vibrational spectra. These vibrational spectra give for the first time experimental data capable of distinguishing the exact internal structures of the silicon cluster cations. By comparing the experimental spectra with theoretical predictions based on density functional theory (DFT), unambiguous structural assignments for most of the Si(n)(+) clusters in this size range have been made. In particular, for Si(8)(+) an edge-capped pentagonal bypriamid structure, hitherto not considered, was assigned. These structural assignments provide direct experimental evidence for a cluster growth motif starting with a pentagonal bipyramid building block and changing to a trigonal prism for larger clusters.

12.
Science ; 321(5889): 674-6, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18669858

ABSTRACT

The catalytic properties of gold nanoparticles are determined by their electronic and geometric structures. We revealed the geometries of several small neutral gold clusters in the gas phase by using vibrational spectroscopy between 47 and 220 wavenumbers. A two-dimensional structure for neutral Au7 and a pyramidal structure for neutral Au20 can be unambiguously assigned. The reduction of the symmetry when a corner atom is cut from the tetrahedral Au20 cluster is directly reflected in the vibrational spectrum of Au19.

13.
J Phys Chem A ; 112(30): 6902-7, 2008 Jul 31.
Article in English | MEDLINE | ID: mdl-18610992

ABSTRACT

A combined computational and experimental investigation provides evidence that excited thorium and uranium atoms activate ethane to form the vinyl metal trihydride, metallacyclopropane dihydride, and ethylidene metal dihydride for thorium and the latter complex and the inserted ethyl metal hydride for uranium. These products are trapped in solid argon and identified through deuterium isotopic substitution and vibrational frequencies calculated by density functional theory. Comparisons are made with group 4 and methane reaction products. Numerous calculations using several methods show that these simple ethylidene complexes are more distorted by the agostic interaction than the corresponding methylidene species. This enhanced agostic interaction probably arises from methyl hydrogen to alpha-H repulsions, which leads to a substantial decrease in the alpha-H to Th agostic interaction distance, and contributes to our understanding of agostic distortion in organometallic complexes.

14.
Inorg Chem ; 47(5): 1435-42, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18237123

ABSTRACT

Through reactions of laser-ablated uranium atoms with methylene halides CH2XY (XY = F2, FCl, and Cl2), a series of new actinide methylidene molecules CH2UF2, CH2UFCl, and CH2UCl2 are formed as the major products. The identification of these complexes has been accomplished via matrix infrared spectra, isotopic substitution, and relativistic density functional calculations of the vibrational frequencies and infrared intensities. Density functional calculations using the generalized gradient approach (PW91) show that these CH2UXY methylidene complexes prefer highly distorted agostic structures rather than the ethylene-like symmetric structures. The calculated agostic angles ([angle]H-C-U) are around 89 degrees for all the three uranium complexes, and the predicted vibrational modes and isotopic shifts agree well with experimental values. Electronic structure calculations reveal that these U(IV) molecules all have strong C=U double bonds in the triplet ground states with 5f (2) configurations. The calculated bond lengths and bond energies indicate that the C=U double bonds are slightly weaker in the fluoride species than in the chloride species because of the radial contraction of the U (6d) orbitals by the inductive effect of the fluorine substituent. The agostic uranium methylidene complexes are compared with analogous transition metal and thorium complexes, which reveal interesting differences in their chemistries.

15.
Proc Natl Acad Sci U S A ; 104(48): 18919-24, 2007 Nov 27.
Article in English | MEDLINE | ID: mdl-18024591

ABSTRACT

Chemistry of the actinide elements represents a challenging yet vital scientific frontier. Development of actinide chemistry requires fundamental understanding of the relative roles of actinide valence-region orbitals and the nature of their chemical bonding. We report here an experimental and theoretical investigation of the uranium methylidyne molecules X(3)U CH (X = F, Cl, Br), F(2)ClU CH, and F(3)U CF formed through reactions of laser-ablated uranium atoms and trihalomethanes or carbon tetrafluoride in excess argon. By using matrix infrared spectroscopy and relativistic quantum chemistry calculations, we have shown that these actinide complexes possess relatively strong U C triple bonds between the U 6d-5f hybrid orbitals and carbon 2s-2p orbitals. Electron-withdrawing ligands are critical in stabilizing the U(VI) oxidation state and sustaining the formation of uranium multiple bonds. These unique U C-bearing molecules are examples of the long-sought actinide-alkylidynes. This discovery opens the door to the rational synthesis of triple-bonded actinide carbon compounds.

16.
J Phys Chem A ; 111(47): 11996-2000, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-17975901

ABSTRACT

The vibrational spectra of UBz and ThBz have been measured in solid argon. Complementary quantum chemical calculations have allowed the assignments of the vibrational spectra. According to the calculations, AcBz are stable molecules, as well as other species like BzAcBz and BzAc2Bz. Experimentally, there is no evidence for the sandwich compounds BzAcBz and BzAc2Bz due to the limitations in the reagent concentrations.

18.
Inorg Chem ; 46(21): 8728-38, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17880062

ABSTRACT

The XC[triple bond]ReX3 complexes (X = F, Cl) are produced by CX(4) reaction with laser-ablated Re atoms, following oxidative C-X insertion and alpha-halogen migration in favor of the carbon-metal triple bond and are identified through the observation of characteristic absorptions in the argon matrix infrared spectra and comparison with vibrational frequencies calculated by density functional theory. The methylidyne C-F and C-Cl stretching absorptions are observed near 1584 and 1328 cm-1, and the C-H stretching modes for HC[triple bond]ReX3 at 3104 and 3097 cm(-1), respectively, which are substantially higher than the precursor stretching modes and in agreement with the general trend that higher s-orbital character in carbon hybridization leads to a higher stretching frequency. The Jahn-Teller effect in the doublet-state XC[triple bond]ReX3 and HC[triple bond]ReX3 complexes gives rise to distorted structures with Cs symmetry and two equivalent longer Re-X bonds and one slightly shorter Re-X bond.

19.
Inorg Chem ; 46(12): 4799-808, 2007 Jun 11.
Article in English | MEDLINE | ID: mdl-17542639

ABSTRACT

Group 4 transition metal methylidene difluoride complexes (CH2=MF2) are formed by the reaction of methylene fluoride with laser-ablated metal atoms and are isolated in an argon matrix. Isotopic substitution of the CH2F2 precursor and theoretical computations (B3LYP and CCSD) confirm product identifications and assignments. Our calculations indicate that the CH2=MF2 complexes have near C2v symmetry and are considerably more stable than other possible products (CH2(mu-F)MF and CHF=MHF). The primary reaction exothermicity provides more than enough energy to activate the initial bridge-bonded CH2(mu-F)MF products on the triplet potential energy surface to complete an alpha-F transfer to form the very stable CH2=MF2 products. Analogous experiments with CHF3 produce CHF=TiF2, which is not distorted at the C-H bond, whereas the heavier group 4 metals form lower-energy triplet HC/MF3 complexes, which contain weak degenerate C(p)-M(d) pi-bonding interactions. Comparisons are made with the CH2=MHF methylidene species, which showed considerable agostic distortions.

20.
Inorg Chem ; 46(12): 4917-25, 2007 Jun 11.
Article in English | MEDLINE | ID: mdl-17487964

ABSTRACT

Uranium atoms activate methane upon ultraviolet excitation to form the methyl uranium hydride CH3-UH, which undergoes alpha-H transfer to produce uranium methylidene dihydride, CH2=UH2. This rearrangement most likely occurs on an excited-quintet potential-energy surface and is followed by relaxation in the argon matrix. These simple U+CH4 reaction products are identified through isotopic substitution (13CH4, CD4, CH2D2) and density functional theory frequency and structure calculations for the strong U-H stretching modes. Relativistic multiconfiguration (CASSCF/CASPT2) calculations substantiate the agostic distorted C1 ground-state structure for the triplet CH2=UH2 molecule. We find that uranium atoms are less reactive in methane activation than thorium atoms. Our calculations show that the CH2=UH2 complex is distorted more than CH2=ThH2. A favorable interaction between the low energy open-shell U(5f) sigma orbital and the agostic hydrogen contributes to the distortion in the uranium methylidene complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...