Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 291(2026): 20240778, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955231

ABSTRACT

Mammals influence nearly all aspects of energy flow and habitat structure in modern terrestrial ecosystems. However, anthropogenic effects have probably altered mammalian community structure, raising the question of how past perturbations have done so. We used functional diversity (FD) to describe how the structure of North American mammal palaeocommunities changed over the past 66 Ma, an interval spanning the radiation following the K/Pg and several subsequent environmental disruptions including the Palaeocene-Eocene Thermal Maximum (PETM), the expansion of grassland, and the onset of Pleistocene glaciation. For 264 fossil communities, we examined three aspects of ecological function: functional evenness, functional richness and functional divergence. We found that shifts in FD were associated with major ecological and environmental transitions. All three measures of FD increased immediately following the extinction of the non-avian dinosaurs, suggesting that high degrees of ecological disturbance can lead to synchronous responses both locally and continentally. Otherwise, the components of FD were decoupled and responded differently to environmental changes over the last ~56 Myr.


Subject(s)
Biodiversity , Fossils , Mammals , Animals , Mammals/physiology , North America , Ecosystem , Biological Evolution
2.
Science ; 379(6636): 1054-1059, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893233

ABSTRACT

Islands have long been recognized as distinctive evolutionary arenas leading to morphologically divergent species, such as dwarfs and giants. We assessed how body size evolution in island mammals may have exacerbated their vulnerability, as well as how human arrival has contributed to their past and ongoing extinctions, by integrating data on 1231 extant and 350 extinct species from islands and paleo islands worldwide spanning the past 23 million years. We found that the likelihood of extinction and of endangerment are highest in the most extreme island dwarfs and giants. Extinction risk of insular mammals was compounded by the arrival of modern humans, which accelerated extinction rates more than 10-fold, resulting in an almost complete demise of these iconic marvels of island evolution.


Subject(s)
Anthropogenic Effects , Biodiversity , Biological Evolution , Body Size , Extinction, Biological , Mammals , Animals , Humans , Islands , Mammals/anatomy & histology , Mammals/growth & development
3.
Proc Natl Acad Sci U S A ; 119(39): e2115015119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122233

ABSTRACT

The conservation status of large-bodied mammals is dire. Their decline has serious consequences because they have unique ecological roles not replicated by smaller-bodied animals. Here, we use the fossil record of the megafauna extinction at the terminal Pleistocene to explore the consequences of past biodiversity loss. We characterize the isotopic and body-size niche of a mammal community in Texas before and after the event to assess the influence on the ecology and ecological interactions of surviving species (>1 kg). Preextinction, a variety of C4 grazers, C3 browsers, and mixed feeders existed, similar to modern African savannas, with likely specialization among the two sabertooth species for juvenile grazers. Postextinction, body size and isotopic niche space were lost, and the δ13C and δ15N values of some survivors shifted. We see mesocarnivore release within the Felidae: the jaguar, now an apex carnivore, moved into the specialized isotopic niche previously occupied by extinct cats. Puma, previously absent, became common and lynx shifted toward consuming more C4-based resources. Lagomorphs were the only herbivores to shift toward C4 resources. Body size changes from the Pleistocene to Holocene were species-specific, with some animals (deer, hare) becoming significantly larger and others smaller (bison, rabbits) or exhibiting no change to climate shifts or biodiversity loss. Overall, the Holocene body-size-isotopic niche was drastically reduced and considerable ecological complexity lost. We conclude biodiversity loss led to reorganization of survivors and many "missing pieces" within our community; without intervention, the loss of Earth's remaining ecosystems that support megafauna will likely suffer the same fate.


Subject(s)
Deer , Ecosystem , Animals , Biodiversity , Fossils , Rabbits , Texas
4.
Science ; 375(6578): eabj7383, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35050650

ABSTRACT

The analysis of dinosaur ecology hinges on the appropriate reconstruction and analysis of dinosaur biodiversity. Benson et al. question the data used in our analysis and our subsequent interpretation of the results. We address these concerns and show that their reanalysis is flawed. Indeed, when occurrences are filtered to include only valid taxa, their revised dataset strengthens our earlier conclusions.


Subject(s)
Dinosaurs , Animals , Biodiversity , Biological Evolution , Dinosaurs/anatomy & histology , Ecology , Fossils
5.
Science ; 371(6532): 941-944, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33632845

ABSTRACT

Despite dominating biodiversity in the Mesozoic, dinosaurs were not speciose. Oviparity constrained even gigantic dinosaurs to less than 15 kg at birth; growth through multiple morphologies led to the consumption of different resources at each stage. Such disparity between neonates and adults could have influenced the structure and diversity of dinosaur communities. Here, we quantified this effect for 43 communities across 136 million years and seven continents. We found that megatheropods (more than 1000 kg) such as tyrannosaurs had specific effects on dinosaur community structure. Although herbivores spanned the body size range, communities with megatheropods lacked carnivores weighing 100 to 1000 kg. We demonstrate that juvenile megatheropods likely filled the mesocarnivore niche, resulting in reduced overall taxonomic diversity. The consistency of this pattern suggests that ontogenetic niche shift was an important factor in generating dinosaur community structure and diversity.


Subject(s)
Biodiversity , Dinosaurs , Animals , Biological Variation, Population , Body Size , Body Weight , Carnivory , Dinosaurs/anatomy & histology , Dinosaurs/growth & development , Fossils , Herbivory
6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33397717

ABSTRACT

Cities and agricultural fields encroach on the most fertile, habitable terrestrial landscapes, fundamentally altering global ecosystems. Today, 75% of terrestrial ecosystems are considerably altered by human activities, and landscape transformation continues to accelerate. Human impacts are one of the major drivers of the current biodiversity crisis, and they have had unprecedented consequences on ecosystem function and rates of species extinctions for thousands of years. Here we use the fossil record to investigate whether changes in geographic range that could result from human impacts have altered the climatic niches of 46 species covering six mammal orders within the contiguous United States. Sixty-seven percent of the studied mammals have significantly different climatic niches today than they did before the onset of the Industrial Revolution. Niches changed the most in the portions of the range that overlap with human-impacted landscapes. Whether by forcible elimination/introduction or more indirect means, large-bodied dietary specialists have been extirpated from climatic envelopes that characterize human-impacted areas, whereas smaller, generalist mammals have been facilitated, colonizing these same areas of the climatic space. Importantly, the climates where we find mammals today do not necessarily represent their past habitats. Without mitigation, as we move further into the Anthropocene, we can anticipate a low standing biodiversity dominated by small, generalist mammals.


Subject(s)
Agriculture , Animal Distribution , Climate , Fossils , Mammals , Urbanization , Animals , Body Size , Conservation of Natural Resources , Diet , Ecosystem , Humans , Time Factors , United States
7.
Trends Ecol Evol ; 36(1): 61-75, 2021 01.
Article in English | MEDLINE | ID: mdl-33067015

ABSTRACT

Recent renewed interest in using fossil data to understand how biotic interactions have shaped the evolution of life is challenging the widely held assumption that long-term climate changes are the primary drivers of biodiversity change. New approaches go beyond traditional richness and co-occurrence studies to explicitly model biotic interactions using data on fossil and modern biodiversity. Important developments in three primary areas of research include analysis of (i) macroevolutionary rates, (ii) the impacts of and recovery from extinction events, and (iii) how humans (Homo sapiens) affected interactions among non-human species. We present multiple lines of evidence for an important and measurable role of biotic interactions in shaping the evolution of communities and lineages on long timescales.


Subject(s)
Biodiversity , Fossils , Biological Evolution , Climate Change
8.
Am Nat ; 196(3): 271-290, 2020 09.
Article in English | MEDLINE | ID: mdl-32813992

ABSTRACT

AbstractHuman-mediated species invasion and climate change are leading to global extinctions and are predicted to result in the loss of important axes of phylogenetic and functional diversity. However, the long-term robustness of modern communities to invasion is unknown, given the limited timescales over which they can be studied. Using the fossil record of the Paleocene-Eocene thermal maximum (PETM; ∼56 Ma) in North America, we evaluate mammalian community-level response to a rapid global warming event (5°-8°C) and invasion by three Eurasian mammalian orders and by species undergoing northward range shifts. We assembled a database of 144 species body sizes and created a time-scaled composite phylogeny. We calculated the phylogenetic and functional diversity of all communities before, during, and after the PETM. Despite increases in the phylogenetic diversity of the regional species pool, phylogenetic diversity of mammalian communities remained relatively unchanged, a pattern that is invariant to the tree dating method, uncertainty in tree topology, and resolution. Similarly, body size dispersion and the degree of spatial taxonomic turnover of communities remained similar across the PETM. We suggest that invasion by new taxa had little impact on Paleocene-Eocene mammal communities because niches were not saturated. Our findings are consistent with the numerous studies of modern communities that record little change in community-scale richness despite turnover in taxonomic composition during invasion. What remains unknown is whether long-term robustness to biotic and abiotic perturbation are retained by modern communities given global anthropogenic landscape modification.


Subject(s)
Animal Distribution , Biodiversity , Body Size , Climate Change , Mammals/anatomy & histology , Mammals/physiology , Animals , Fossils/anatomy & histology , North America , Phylogeny
9.
Science ; 365(6459): 1305-1308, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31604240

ABSTRACT

Large mammals are at high risk of extinction globally. To understand the consequences of their demise for community assembly, we tracked community structure through the end-Pleistocene megafaunal extinction in North America. We decomposed the effects of biotic and abiotic factors by analyzing co-occurrence within the mutual ranges of species pairs. Although shifting climate drove an increase in niche overlap, co-occurrence decreased, signaling shifts in biotic interactions. Furthermore, the effect of abiotic factors on co-occurrence remained constant over time while the effect of biotic factors decreased. Biotic factors apparently played a key role in continental-scale community assembly before the extinctions. Specifically, large mammals likely promoted co-occurrence in the Pleistocene, and their loss contributed to the modern assembly pattern in which co-occurrence frequently falls below random expectations.


Subject(s)
Ecosystem , Extinction, Biological , Fossils , Mammals , Animals , Climate Change , North America , Paleontology , Population Dynamics
10.
Am Nat ; 192(3): E120-E138, 2018 09.
Article in English | MEDLINE | ID: mdl-30125228

ABSTRACT

Biological systems provide examples of differential success among taxa, from ecosystems with a few dominant species (ecological success) to clades that possess far more species than sister clades (macroevolutionary success). Macroecological success, the occupation by a species or clade of an unusually high number of areas, has received less attention. If macroecological success reflects heritable traits, then successful species should be related. Genera composed of species possessing those traits should occupy more areas than genera with comparable species richness that lack such traits. Alternatively, if macroecological success reflects autapomorphic traits, then generic occupancy should be a by-product of species richness among genera and occupancy of constituent species. We test this using Phanerozoic marine invertebrates. Although temporal patterns of species and generic occupancy are strongly correlated, inequality in generic occupancy typically is greater than expected. Genus-level patterns cannot be explained solely with species-level patterns. Within individual intervals, deviations between the observed and expected generic occupancy correlate with the number of lithological units (stratigraphic formations), particularly after controlling for geographic range and species richness. However, elevated generic occupancy is unrelated to or negatively associated with either generic geographic ranges or within-genus species richness. Our results suggest that shared traits among congeneric species encourage short-term macroecological success without generating short-term macroevolutionary success. A broad niche may confer high occupancy but does not necessarily promote speciation.


Subject(s)
Biological Evolution , Ecosystem , Fossils , Invertebrates/genetics , Algorithms , Animals
11.
Science ; 360(6386): 310-313, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29674591

ABSTRACT

Since the late Pleistocene, large-bodied mammals have been extirpated from much of Earth. Although all habitable continents once harbored giant mammals, the few remaining species are largely confined to Africa. This decline is coincident with the global expansion of hominins over the late Quaternary. Here, we quantify mammalian extinction selectivity, continental body size distributions, and taxonomic diversity over five time periods spanning the past 125,000 years and stretching approximately 200 years into the future. We demonstrate that size-selective extinction was already under way in the oldest interval and occurred on all continents, within all trophic modes, and across all time intervals. Moreover, the degree of selectivity was unprecedented in 65 million years of mammalian evolution. The distinctive selectivity signature implicates hominin activity as a primary driver of taxonomic losses and ecosystem homogenization. Because megafauna have a disproportionate influence on ecosystem structure and function, past and present body size downgrading is reshaping Earth's biosphere.


Subject(s)
Biological Evolution , Body Size , Extinction, Biological , Hominidae/physiology , Animals , Fossils , Humans
12.
Proc Biol Sci ; 284(1857)2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28637850

ABSTRACT

Over the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.9 billion years ago (Ga), and multicellular life diversifying from unicellular ancestors approximately 0.6 Ga. However, the quantitative relationship between organismal size and structural complexity remains poorly documented. We assessed this relationship using a comprehensive dataset that includes organismal size and level of biological complexity for 11 172 extant genera. We find that the distributions of sizes within complexity levels are unimodal, whereas the aggregate distribution is multimodal. Moreover, both the mean size and the range of size occupied increases with each additional level of complexity. Increases in size range are non-symmetric: the maximum organismal size increases more than the minimum. The majority of the observed increase in organismal size over the history of life on the Earth is accounted for by two discrete jumps in complexity rather than evolutionary trends within levels of complexity. Our results provide quantitative support for an evolutionary expansion away from a minimal size constraint and suggest a fundamental rescaling of the constraints on minimal and maximal size as biological complexity increases.


Subject(s)
Biological Evolution , Eukaryota , Prokaryotic Cells , Earth, Planet
16.
Biol Lett ; 12(6)2016 06.
Article in English | MEDLINE | ID: mdl-27330176

ABSTRACT

Understanding extinction drivers in a human-dominated world is necessary to preserve biodiversity. We provide an overview of Quaternary extinctions and compare mammalian extinction events on continents and islands after human arrival in system-specific prehistoric and historic contexts. We highlight the role of body size and life-history traits in these extinctions. We find a significant size-bias except for extinctions on small islands in historic times. Using phylogenetic regression and classification trees, we find that while life-history traits are poor predictors of historic extinctions, those associated with difficulty in responding quickly to perturbations, such as small litter size, are good predictors of prehistoric extinctions. Our results are consistent with the idea that prehistoric and historic extinctions form a single continuing event with the same likely primary driver, humans, but the diversity of impacts and affected faunas is much greater in historic extinctions.


Subject(s)
Extinction, Biological , Mammals/physiology , Animals , Body Size , Human Activities , Humans , Islands , Life Cycle Stages , Mammals/anatomy & histology , Mammals/classification , Phylogeny
17.
Ecol Lett ; 19(5): 546-53, 2016 May.
Article in English | MEDLINE | ID: mdl-26932459

ABSTRACT

Comparing the magnitude of the current biodiversity crisis with those in the fossil record is difficult without an understanding of differential preservation. Integrating data from palaeontological databases with information on IUCN status, ecology and life history characteristics of contemporary mammals, we demonstrate that only a small and biased fraction of threatened species (< 9%) have a fossil record, compared with 20% of non-threatened species. We find strong taphonomic biases related to body size and geographic range. Modern species with a fossil record tend to be large and widespread and were described in the 19(th) century. The expected magnitude of the current extinction based only on species with a fossil record is about half of that of one based on all modern species; values for genera are similar. The record of ancient extinctions may be similarly biased, with many species having originated and gone extinct without leaving a tangible record.


Subject(s)
Extinction, Biological , Fossils , Animals , Bias , Body Size , Data Interpretation, Statistical , Homing Behavior
18.
Proc Natl Acad Sci U S A ; 113(4): 874-9, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26504225

ABSTRACT

Globally, large-bodied wild mammals are in peril. Because "megamammals" have a disproportionate influence on vegetation, trophic interactions, and ecosystem function, declining populations are of considerable conservation concern. However, this is not new; trophic downgrading occurred in the past, including the African rinderpest epizootic of the 1890s, the massive Great Plains bison kill-off in the 1860s, and the terminal Pleistocene extinction of megafauna. Examining the consequences of these earlier events yields insights into contemporary ecosystem function. Here, we focus on changes in methane emissions, produced as a byproduct of enteric fermentation by herbivores. Although methane is ∼ 200 times less abundant than carbon dioxide in the atmosphere, the greater efficiency of methane in trapping radiation leads to a significant role in radiative forcing of climate. Using global datasets of late Quaternary mammals, domestic livestock, and human population from the United Nations as well as literature sources, we develop a series of allometric regressions relating mammal body mass to population density and CH4 production, which allows estimation of methane production by wild and domestic herbivores for each historic or ancient time period. We find the extirpation of megaherbivores reduced global enteric emissions between 2.2-69.6 Tg CH4 y(-1) during the various time periods, representing a decrease of 0.8-34.8% of the overall inputs to tropospheric input. Our analyses suggest that large-bodied mammals have a greater influence on methane emissions than previously appreciated and, further, that changes in the source pool from herbivores can influence global biogeochemical cycles and, potentially, climate.


Subject(s)
Climate , Ecosystem , Extinction, Biological , Herbivory , Mammals/metabolism , Methane/analysis , Anaerobiosis , Animal Distribution , Animals , Animals, Domestic , Animals, Wild , Bison , Digestion , Disease Outbreaks/history , Disease Outbreaks/veterinary , Europe , Fermentation , Greenhouse Effect , History, Ancient , Human Activities , Humans , Ice , Methane/metabolism , Plant Dispersal , Plants, Edible , Rinderpest/history
19.
Nature ; 529(7584): 80-3, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26675730

ABSTRACT

Understanding how ecological communities are organized and how they change through time is critical to predicting the effects of climate change. Recent work documenting the co-occurrence structure of modern communities found that most significant species pairs co-occur less frequently than would be expected by chance. However, little is known about how co-occurrence structure changes through time. Here we evaluate changes in plant and animal community organization over geological time by quantifying the co-occurrence structure of 359,896 unique taxon pairs in 80 assemblages spanning the past 300 million years. Co-occurrences of most taxon pairs were statistically random, but a significant fraction were spatially aggregated or segregated. Aggregated pairs dominated from the Carboniferous period (307 million years ago) to the early Holocene epoch (11,700 years before present), when there was a pronounced shift to more segregated pairs, a trend that continues in modern assemblages. The shift began during the Holocene and coincided with increasing human population size and the spread of agriculture in North America. Before the shift, an average of 64% of significant pairs were aggregated; after the shift, the average dropped to 37%. The organization of modern and late Holocene plant and animal assemblages differs fundamentally from that of assemblages over the past 300 million years that predate the large-scale impacts of humans. Our results suggest that the rules governing the assembly of communities have recently been changed by human activity.


Subject(s)
Agriculture/history , Ecosystem , Human Activities/history , Plant Physiological Phenomena , Animals , History, Ancient , Humans , North America , Population Dynamics , Time Factors
20.
Glob Chang Biol ; 21(10): 3880-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25970851

ABSTRACT

Methane is an important greenhouse gas, but characterizing production by source sector has proven difficult. Current estimates suggest herbivores produce ~20% (~76-189 Tg yr(-1) ) of methane globally, with wildlife contributions uncertain. We develop a simple and accurate method to estimate methane emissions and reevaluate production by wildlife. We find a strikingly robust relationship between body mass and methane output exceeding the scaling expected by differences in metabolic rate. Our allometric model gives a significantly better fit to empirical data than IPCC Tier 1 and 2 calculations. Our analysis suggests that (i) the allometric model provides an easier and more robust estimate of methane production than IPCC models currently in use; (ii) output from wildlife is much higher than previously considered; and (iii) because of the allometric scaling of methane output with body mass, national emissions could be reduced if countries favored more, smaller livestock, over fewer, larger ones.


Subject(s)
Air Pollutants/analysis , Greenhouse Effect , Herbivory , Mammals/physiology , Methane/analysis , Animals , Body Weight , Environmental Monitoring , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...