Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 155(5): 054108, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34364347

ABSTRACT

Here, we present a concise model that can predict the photoluminescent properties of a given compound from first principles, both within and beyond the Franck-Condon approximation. The formalism required to compute fluorescence, Internal Conversion (IC), and Inter-System Crossing (ISC) is discussed. The IC mechanism, in particular, is a difficult pathway to compute due to difficulties associated with the computation of required bosonic configurations and non-adiabatic coupling elements. Here, we offer a discussion and breakdown on how to model these pathways at the Density Functional Theory (DFT) level with respect to its computational implementation, strengths, and current limitations. The model is then used to compute the photoluminescent quantum yield (PLQY) of a number of small but important compounds: anthracene, tetracene, pentacene, diketo-pyrrolo-pyrrole (DPP), and Perylene Diimide (PDI) within a polarizable continuum model. Rate constants for fluorescence, IC, and ISC compare well for the most part with respect to experiment, despite triplet energies being overestimated to a degree. The resulting PLQYs are promising with respect to the level of theory being DFT. While we obtained a positive result for PDI within the Franck-Condon limit, the other systems require a second order correction. Recomputing quantum yields with Herzberg-Teller terms yields PLQYs of 0.19, 0.08, 0.04, 0.70, and 0.99 for anthracene, tetracene, pentacene, DPP, and PDI, respectively. Based on these results, we are confident that the presented methodology is sound with respect to the level of quantum chemistry and presents an important stepping stone in the search for a tool to predict the properties of larger coupled systems.

2.
J Phys Chem A ; 120(33): 6541-56, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27487471

ABSTRACT

The dynamics of the nonadiabatically coupled lowest singlet excited states of cis- and trans-hexatriene are studied theoretically, in a comprehensive electronic structure and quantum dynamical investigation. At the ground state equilibrium geometry the relevant S2 and S1 states carry the A1 (Ag) and B2 (Bu) symmetry labels, for the cis (trans) isomer. Various high-level electronic structure methods are used, including the recently reparametrized DFT/MRCI method, and the results are critically compared. Key parameters of interest are the vertical energy gap and the strength of vibronic coupling between the interacting electronic states. To estimate their influence, suitable comparison calculations are performed. The results are used as the basis for quantum dynamical calculations on the UV absorption spectrum and electronic population transfer involving the S1 and S2 states. Up to nine nonseparable degrees of freedom are included in the calculations. The experimental UV absorption spectrum in the 5-5.2 eV energy range can be very well reproduced. The time-dependent wavepacket propagations reveal a population transfer on the order of 30-50 fs, which becomes increasingly complete with more degrees of freedom included in the calculation. The results are briefly compared with analogous data for the s-trans-butadiene system treated by some of us recently.

SELECTION OF CITATIONS
SEARCH DETAIL
...